English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42582490      線上人數 : 1425
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95118


    題名: 不同Cusp磁場條件之柴式與連續柴氏矽單晶生長之熱場與氧濃度數值模擬;Numerical Simulation of Temperature and Oxygen Concentration under Different Cusp Magnetic Conditions during Czochralski and Continuous Czochralski Silicon Crystal Growths
    作者: 吳庭宜;Wu, Ting I
    貢獻者: 能源工程研究所
    關鍵詞: 柴氏長晶法;連續柴氏長晶法;磁控柴氏長晶法;cusp磁場;Cz;CCz;MCz;CMF
    日期: 2024-07-11
    上傳時間: 2024-10-09 16:18:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 連續柴氏長晶法(Continuous Czochralski crystal growth, CCz)在傳統柴氏長晶法(Czochralski crystal growth, Cz)基礎上進行改進,以提高生產效率。CCz 方法通過連續加入多晶矽至坩堝中,使熔體保持一定的液面高度和穩定的化學組成。然而,為了避免尚未熔化完全的多晶矽影響晶體生成,研究中加入一石英隔板,阻隔進料區與晶體生長區。但此也使得氧雜質增加以及熔湯流動和熱傳改變。因此,本研究針對連續柴氏雙坩堝長晶中的氧濃度上升及熔湯流動不穩定問題,通過數值模擬分析在有無cusp磁場(CMF)、不同磁場強度大小、不同晶體坩堝旋轉方向、平衡與不平衡磁場條件與不同磁場強度比(Magnetic Ratio, MR)下對流動型態、溫度分布、氧濃度與固液界面高度造成的影響,並比較Cz與CCz之間的差別。
    研究結果顯示,在坩堝和晶體反向旋轉時施加磁場,因磁場產生的勞倫茲力會改變二次渦漩的大小,進而影響熔湯內的流動結構,這對固液界面(晶體-熔湯)處的氧雜質濃度具有關鍵影響。此外,不平衡磁場能使熔湯升溫,促使單晶矽更完全地熔化,並且相比於平衡磁場下,能降低氧雜質濃度。然而,在同向旋轉的情況下,會使得固液界面下方渦漩增強,雖然可以減少氧雜質濃度,但這也會導致界面高度增加。
    ;The Continuous Czochralski crystal growth (CCz) method is an improvement based on the traditional Czochralski crystal growth (Cz) technique, aimed at enhancing production efficiency. The CCz method continuously adds polycrystalline silicon to the crucible, maintaining a consistent melt level and stable chemical composition. However, to prevent incompletely melted polycrystalline silicon from affecting crystal growth, a partition is added in the study to separate the feed area from the crystal growth area. But this also results in an increase in oxygen concentration and altered melt flow and heat transfer.
    Therefore, this study addresses the issues of rising oxygen concentration and unstable melt flow in continuous Czochralski double-crucible growth through numerical simulations to analyzes the effects of various factors on flow patterns, temperature distribution, oxygen concentration, and the height of the crystal-melt interface, including the presence or absence of a cusp magnetic field, different magnetic field densities, different crystal and crucible rotation directions, balanced versus unbalanced magnetic field conditions, and different magnetic ratios (MR). The differences between Cz and CCz methods are also compared.
    Research results show that when a magnetic field is applied during the counter-rotation of the crucible and crystal, the Lorentz force generated by the magnetic field alters the size of secondary vortices. Thereby influencing the flow structure within the melt. This has a critical impact on the oxygen concentration at the crystal-melt interface. In addition, an unbalanced magnetic field can increase the temperature of the melt, allowing the silicon to melt more thoroughly. Compared to the balanced magnetic field, it reduces the oxygen concentration. However, in the case of co-rotation, the vortex below the solid-liquid interface is enhanced. While this can reduce the oxygen impurity concentration, it also leads to an increase in the interface height.
    顯示於類別:[能源工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML45檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明