中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95237
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41656406      Online Users : 1558
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95237


    Title: 克利金模型中基於Kullback-Leibler損失的共變異函數選擇;Covariance Function Selection in Kriging Models Using Kullback-Leibler Loss
    Authors: 賴堉溱;Lai, Yu-Chen
    Contributors: 統計研究所
    Keywords: 空氣品質;資料擾動;Kullback-Leibler 損失;均方預測誤差;參數估計;Air quality;Data perturbation;Kullback-Leibler loss;Mean squared prediction error;Parameter estimation
    Date: 2024-07-03
    Issue Date: 2024-10-09 16:34:56 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在空間統計領域中,克利金(kriging)模型被廣泛應用於預測空間中感興趣的隨機變數,包括沒有觀測數據的位置。然而,這種預測方法依賴於空間相關函數的使用,而這些函數直接影響克利金預測結果的表現。本篇論文欲透過結合各種協方差函數於克利金空間模型中,探討空間相關函數對預測結果的影響。我們使用Kullback-Leibler 損失準則來評估克利金模型的表現,並透過數據擾動技術來估計和量化克里金模型的預測複雜性。基於此,我們提出了一個用於選擇適當協方差函數的準則。所提方法的有效性將透過多種模擬實驗驗證,並且我們將該方法應用於分析台灣的空氣品質數據,以說明其實用性。;In the field of spatial statistics, kriging models are frequently utilized for predicting variables of interest across a study region, including in areas without observational data, based on noise data observed at specific locations. The use of spatial correlation functions plays a crucial role in this context, as they directly impact
    the accuracy of kriging predictions. This thesis attempts to address this challenge by exploring the use of different covariance functions within spatial models. The performance of spatial kriging models employing various covariance functions is evaluated using the Kullback-Leibler loss criterion. Moreover, we measure the complexity of any spatial prediction method through the concept of generalized degrees of freedom, estimated using data perturbation techniques. Consequently, an estimated Kullback-Leibler loss criterion is proposed for selecting an appropriate covariance function. Focusing on spatial prediction, the effectiveness of the proposed method is validated through simulation experiments, and its practical utility is demonstrated using air quality data from Taiwan.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML23View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明