English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41619912      線上人數 : 3038
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95292


    題名: 百分比資料的迴歸分析之強韌負二項概似函數法;Robust negative binomial likelihood inferences for regression analysis of percentage data
    作者: 葉霈彤;Yeh, Pei-Tung
    貢獻者: 統計研究所
    關鍵詞: 強韌概似函數;百分比資料;Robust likelihood function;Percentage data
    日期: 2024-07-15
    上傳時間: 2024-10-09 16:38:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 針對百分比資料,我們通常假設資料是符合貝他分配(beta distribution),以進行分析。然而,在實際應用中,往往無法確定資料的真實分配,這可能會導致對感興趣參數的統計推論出現錯誤。
    本文運用強韌化負二項實作概似函數,分析百分比資料。
    透過模擬和實例分析,我們呈現了強韌華德檢定統計量(robust wald statistics)、強韌分數檢定統計量(robust score statistics)、強韌概似比檢定統計量(robust likelihood ratio statistics),以及各個檢定的信賴區間(confidence interval)與覆蓋機率(coverage probability)。
    我們比較此方法與貝他迴歸模型在分析百分比資料時的差異與優缺點。通過
    簡單迴歸說明,當資料為獨立且同分配(independent and identically distributed, iid)時,隨著樣本數增加,能看出貝他迴歸模型在檢定時會產生錯誤。而在非 iid 的迴歸架構下,貝他迴歸模型的參數估計量已會有明顯的錯誤。使用本文提出的方法,即使未知資料的真實分配,我們仍能得到正確的統計推論,且更適用於實際情況。
    ;Percentage data can be analyzed based on beta distribution. However, in practical applications, we often cannot determine the true distribution of the data, which could result in incorrect statistical conclusions regarding the parameters of interest.
    This thesis proposes a robust likelihood function method to analyze percentage data. It presents robust Wald statistics and robust score statistics through simulation and case analysis.
    We compare the differences, advantages, and disadvantages between this method and the beta model in analyzing percentage data. Using simple regression as an example, when the data are independently and identically distributed (iid), as the sample size increases, it becomes evident that the beta model produces errors during hypothesis testing. In situations where the data are not iid, the parameter estimates from the beta model exhibit significant errors. Our proposed method can make correct statistical inferences even though using a misspecified model.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML29檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明