中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95299
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 44005263      Online Users : 911
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95299


    Title: 半監督學習下自定義編碼特徵的大規模比較;A Large-scale Comparison of Customized Feature Encodings under Semi-supervised Learning
    Authors: 陳正浩;Chen, Zheng-Hao
    Contributors: 軟體工程研究所
    Keywords: 自監督學習;對比學習;表格資料;自定義編碼;Self-supervised learnin;Contrastive learnin;tabular data;custom encoding
    Date: 2024-07-30
    Issue Date: 2024-10-09 16:38:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 自定義編碼方式可有效提升深度學習模型在監督式任務的表現,但自定義編碼方式在自監督對比學習的效果則尚未被大規模驗證。本論文設計並實現了一個靈活的自定義特徵編碼框架,讓研究者可以大規模比較比較不同編碼方式在自監督任務的效果。同時,我們提出了一種新的編碼方式,探索其在不同資料集上的潛力和應用價值。;Custom encoding methods can effectively enhance the performance of deep learning models in supervised tasks. However, custom encoding′s effectiveness in self-supervised contrastive learning has yet to be extensively validated. This paper designs and implements a flexible framework for custom feature encoding evaluation, allowing researchers to comprehensively compare the effects of different encoding methods on self-supervised tasks. Additionally, we propose a new encoding method to explore its potential and application value across various datasets.
    Appears in Collections:[Software Engineer] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML85View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明