中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95323
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641877      Online Users : 1480
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95323


    Title: 基於動態網絡和vine copula的投資組合優化;Portfolio Optimization Based on Dynamic Networks and Vine Copulas
    Authors: 林易進;Lin, Yi-Jin
    Contributors: 統計研究所
    Keywords: 金融網絡;最小生成樹;網絡中心性;投資組合優化;藤耦合;financial network;Minimum Spanning Tree;network centrality;portfolio optimization;vine copula
    Date: 2024-07-27
    Issue Date: 2024-10-09 16:39:51 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 這篇研究在探討將藤耦合(vine copula)與網絡方法結合應用於投資組合優化。我們首先使用de-GARCH技術消除每個財務時間序列中的自相關、條件異方差性和波動聚集等內在特徵。接著,我們計算多變量de-GARCH序列的相似矩陣,以構建整體的最小生成樹(MST),這有助於識別適合投資組合的股票。隨後,我們為選定的股票構建局部最小生成樹(LMST),並基於 LMST 使用各種藤耦合模型來描述選定股票的聯合分佈。然後,使用這種基於聯結網路的分佈來設定投資組合中所選股票的權重。我們採用 2019 年至 2023 年 S&P100 指數的成分股,透過移動視窗的架構進行實證研究。數值結果表明,與競爭對手相比,所提出的方法獲得令人滿意的累積報酬。;This study explores the application of vine copulas combined with network methods for portfolio optimization. We begin by eliminating inherent features such as autocorrelation, conditional heteroscedasticity, and volatility clustering in each financial time series using the de-GARCH technique. We then calculate the similarity matrix of the multivariate de-GARCH series to construct the global Minimum Spanning Tree (MST), which helps identify suitable stocks for the portfolio. Subsequently, we build the local MST (LMST) for the selected stocks and employ various vine copulas based on the LMST to model the joint distribution of the selected stocks. This copula network-based distribution is then used for setting the weights of the selected stocks in the portfolio. Our empirical investigation involves the component stocks of the S&P100 index from 2019 to 2023, using a rolling-window framework. The numerical results demonstrate that the proposed method yields satisfactory cumulative returns compared to competitors.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML31View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明