中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95346
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642319      Online Users : 1472
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95346


    Title: 相依性子任務於多邊緣運算伺服器卸載排程與資源分配之研究;Study of Dependent Subtask Offloading Scheduling and Resource Allocation in Multi-access Edge Computing
    Authors: 王育琪;YU-CHI, WANG
    Contributors: 通訊工程學系
    Keywords: 多接取邊緣運算;任務劃分;有向無環圖;相依性任務卸載
    Date: 2024-07-25
    Issue Date: 2024-10-09 16:41:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著低延遲的應用,如虛擬實境 (VR)、遠程手術和智慧工廠等不斷蓬勃發 展,多接取邊緣運算 (MEC) 成為解決此類應用需求的有效方法。MEC 將運算伺 服器放置在更接近裝置端的位置,以縮短數據傳輸時間,從而實現低延遲的任務 處理。然而,由於 MEC 伺服器的運算資源相對有限,因此在有限的邊緣運算伺 服器資源下最大化利用這些資源,並優化任務卸載策略以確保在有限環境中實現 更佳的任務分配和處理成為一個挑戰。

    在本篇論文中研究任務劃分策略,一般而言使用者所發出的任務通常包含多 種方法或執行程序,因此可以將這些任務劃分為若干具有相依性的子任務,並使 用有向無環圖 (DAG) 來模擬這些子任務之間的相依性。通過這種方式,可以進 一步將子任務分成多個叢集 (Cluster),並以此作為卸載的單位,而不是單獨地處 理每個子任務,這樣的做法能夠充分利用子任務之間的相依性。並且通過設計叢 集的權重,來決定卸載的優先順序,使邊緣運算伺服器能夠更好地進行資源分配。

    本篇論文提出了兩種不同的叢集排序卸載策略,基於權重之叢集排序卸載策 略以及基於權重和叢集運算量之叢集排序卸載策略。研究了這些策略對任務卸載 所帶來的效益,並設計了多台邊緣運算伺服器環境下之資源分配方案,以加速整 體任務處理速度,提高任務成功卸載之機率。

    模擬結果顯示,在任務延遲容忍度 150ms 到 200ms、伺服器 4 台且使用者裝 置 60 台時,將任務劃分並卸載至邊緣運算伺服器進行平行運算,基於權重和叢 集運算量之叢集排序卸載策略的阻擋率會比任務無劃分卸載策略約低 16 倍,而 基於權重之叢集排序卸載策略的阻擋率會比任務無劃分卸載策略約低 13.7 倍, 皆可看出顯著效益。
    此外本篇論文提出的策略在特定條件下 (例如在任務延遲約束較嚴格、使用 者數量較多或是伺服器採用不同資源分配方案時) 各自表現出不同的優勢。;Applications like virtual reality (VR), remote surgery, and smart factories are growing rapidly. Multi-access Edge Computing (MEC) effectively meets these applications’ low latency demands by placing computation servers closer to devices. However, MEC’s limited computational resources create challenges in maximizing resource utilization and optimizing task offloading strategies.

    This thesis examines task partitioning strategies by breaking down tasks into subtasks and using Directed Acyclic Graphs (DAG) to model their dependencies. Subtasks are grouped into clusters for offloading, leveraging their dependencies. Offloading is prioritized based on cluster weights to improve resource allocation to edge computing servers.

    Two cluster ordering strategies are proposed: one based on weight, and the other on weight and cluster cycles. The study investigates the benefits of these strategies, designing a multi-edge server resource allocation scheme to enhance task processing and meet delay constraints.

    Simulation results indicate that with a latency tolerance of 150ms to 200ms, four servers, and sixty user equipment, the Weight and Cluster Cycles-Based Cluster Sorting Offloading Strategy reduces the blocking rate by approximately 16 times, and the Weight-Based Cluster Sorting Offloading Strategy by approximately 13.7 times, compared to non-partitioned offloading.

    Additionally, these strategies show different advantages under specific conditions, such as stricter latency constraints, more users, or varied resource allocation schemes.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML32View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明