中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95570
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41638089      Online Users : 1742
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95570


    Title: 使用集成式深度學習方法偵測PTT BasketballTW討論版中諷刺言論之研究;Sarcasm Detection in PTT BasketballTW Discussion Board: Using Ensemble Deep Learning Approach
    Authors: 陳韋州;Chen, Wei-Chou
    Contributors: 資訊管理學系
    Keywords: 集成式學習;諷刺偵測;預訓練語言模型;自然語言處理;ensemble learning;sarcasm detection;pre-trained language models;natural language processing
    Date: 2024-07-26
    Issue Date: 2024-10-09 17:03:54 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著網路社群平台的發展,諷刺文本在線上溝通中扮演了重要角色,但由於其隱晦特性及特殊表達方式,自動檢測諷刺文本在自然語言處理領域仍是一項挑戰。本研究旨在探討適用於繁體中文的諷刺文本自動檢測方法,透過結合多種先進的預訓練語言模型並採用集成學習策略,以提升識別準確性。為了研究當前台灣網路環境中常見的諷刺表達方式,本研究從台灣網路論壇PTT的籃球版(BasketballTW)收集資料,開發了一個繁體中文的諷刺資料集。在資料集建構過程中,選擇合適的標註人員並評估標記一致性,以確保資料品質。而實驗結果表明,集成學習的策略在繁體中文諷刺文本偵測上能夠有效提升分類的效能,特別是結合多個預訓練語言模型的預測機率可以顯著提升模型效能,而結合語言模型的最後一層隱藏層嵌入向量的方法,以及將多個預訓練語言模型的預測機率結合手工設計特徵的方法,在效能提升上則相對有限。;With the development of online social platforms, sarcastic texts play an increasingly important role in online communication. However, due to their implicit nature and unique expression, automatically detecting sarcastic texts remains a challenge in the field of natural language processing. This study aims to explore methods for automatically detecting sarcastic texts in Traditional Chinese by combining various advanced pre-trained language models and adopting ensemble learning strategies to enhance detection accuracy. Data was collected from the basketball message board (BasketballTW), which is one of Taiwan′s largest online forum, PTT, to develop a dataset of sarcastic texts in Traditional Chinese. During the dataset construction, appropriate annotators were selected and the consistency of annotations was evaluated to ensure data quality. Experimental results indicate that ensemble learning strategies significantly improve the classification performance of detecting sarcastic texts in Traditional Chinese, especially when combining the prediction probabilities of multiple pre-trained language models. However, the method of combining the last hidden layer embeddings of language models and integrating manually designed features with the prediction probabilities of multiple pre-trained language models shows relatively limited improvements in performance.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明