English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42774976      線上人數 : 1166
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95710


    題名: 建議的 LSST-Former 深度學習架構基於少樣本學習,用於小資料集的紅樹林損耗檢測;Proposed LSST-Former Deep Learning Architecture based on Few-Shot Learning for Mangrove Loss Detection with a Small Dataset
    作者: 潘易翰;Panuntun, Ilham Adi
    貢獻者: 遙測科技碩士學位學程
    關鍵詞: 紅樹林喪失檢測;少樣本學習;Transformer;全卷積網絡 (FCN);mangrove loss detection;few-shot learning;Transformer;Fully Convolutional Network (FCN)
    日期: 2024-06-24
    上傳時間: 2024-10-09 17:11:20 (UTC+8)
    出版者: 國立中央大學
    摘要: 紅樹林是提供各種生態和社會經濟效益的關鍵生態系統,但它們受到森林砍伐和城市化等人類活動的威脅。傳統的紅樹林損失監測方法依賴於勞動密集和耗時的現場調查或高解析度衛星圖像分析,通常在空間覆蓋和時間分辨率上存在限制。 LSST-Former架構整合了FCN、基於Transformer的模型和少樣本學習技術的優勢,以應對使用小數據集進行紅樹林損失檢測的挑戰。 Transformer已經在捕捉長程依賴性和從序列數據中學習方面取得了顯著成功,而少樣本學習使模型能夠很好地對未見過的類別或任務進行泛化,並且具有有限的訓練示例。通過結合這些方法,LSST-Former旨在有效地從異構類別中學習。我們的實驗結果展示了LSST-Former相對於現有的深度學習架構(如隨機森林、支援向量機、U-Net、LinkNet、Vision Transformer、SpectralFormer、MDPrePost-Net 和SST-Former)的優越性能,凸顯了其在紅樹林保護和管理工作中實際應用的潛力。;Mangroves are crucial ecosystems that provide various ecological and socio-economic benefits, but they are under threat from anthropogenic activities such as deforestation and urbanization. Traditional methods for monitoring mangrove loss rely on labor-intensive and time-consuming field surveys or high-resolution satellite imagery analysis, which are often limited in spatial coverage and temporal resolution. The LSST-Former architecture integrates the strengths of both FCN, Transformer-based models, and few-shot learning techniques to address the challenges of mangrove loss detection with small datasets. Transformers have demonstrated remarkable success in capturing long-range dependencies and learning from sequential data, while few-shot learning enables models to generalize well to unseen classes or tasks with limited training examples. By combining these approaches, LSST-Former aims to learn from heterogeneous classes effectively. Our experimental results showcase the superior performance of LSST-Former compared to existing deep learning architectures such as random forest, Support Vector Machine, U-Net, LinkNet, Vision Transformer, SpectralFormer, MDPrePost-Net, and SST-Former, highlighting its potential for practical applications in mangrove conservation and management efforts.
    顯示於類別:[遙測科技碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML39檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明