English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625323      線上人數 : 1934
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95726


    題名: 提升乳癌篩檢效率之批次排程框架;A Batch Scheduling Framework for Improved Diagnostic Efficiency in Breast Cancer Screening
    作者: 本尼;Akumalla, Brahma reddy
    貢獻者: 資訊工程學系
    關鍵詞: ConvNext;變壓器;卷積層;注意力;乳房腫塊;ConvNext;transformer;convolution layers;attention;Breast mass
    日期: 2024-08-01
    上傳時間: 2024-10-09 17:12:28 (UTC+8)
    出版者: 國立中央大學
    摘要: 深度學習在醫學診斷中的應用,特別是對覆雜的腫塊型乳腺癌,取得了顯著進展。一種采用批量調度器進行動態批量大小調整的新型訓練策略顯示出4\%的性能提升。通過結合注意力機制和雙優化器策略,進一步提高了F1分數和性能的強健性,與傳統方法相比表現更優。此外,一種結合卷積層和變壓器模型的新型特征選擇機制在實驗中表現優於現有的注意力機制。這一創新,加上集成了預訓練權重的“ConvNext Tiny”模型,大大增強了乳腺癌檢測系統的強健性,突顯了這些方法在改進醫學診斷程序中的潛力。;The application of deep learning in medical diagnostics, particularly for complex mass-type breast cancers, has seen significant advancements. A novel training strategy that employs a batch scheduler for dynamic batch size adjustment has demonstrated a performance improvement of 4\%. Further enhancements were achieved by incorporating attention mechanisms and dual optimizer strategies, resulting in superior F1 scores and robust performance compared to traditional methods.Additionally, a novel feature selection mechanism combining convolution layers and a transformer model outperformed established attention mechanisms in experimental trials. This innovation, along with the integration of the ′ConvNext Tiny′ model with pre-trained weights, substantially enhanced the robustness of the breast cancer detection system, underscoring the potential of these methodologies for improving medical diagnostic procedures.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML18檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明