English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41617398      線上人數 : 1301
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95746


    題名: 0和1構成的飽和矩陣、123-強制矩陣與12..k-置換趨避矩陣;Saturation, 123-forcing, and 12..k-permutation-avoiding of 0-1 matrices
    作者: 楊千儒;Yang, Chien-Ju
    貢獻者: 數學系
    關鍵詞: 0-1 矩陣;趨避矩陣;飽和;強制矩陣;置換趨避矩陣;0-1 matrix;excluded matrix;saturation;forcing matrix;permutation-avoiding matrix
    日期: 2024-07-23
    上傳時間: 2024-10-09 17:14:23 (UTC+8)
    出版者: 國立中央大學
    摘要: 0-1矩陣是僅由0和1為元素構成的矩陣。令A為一個0-1矩陣,若存在任一A的子矩陣,透過將任意數量的元素1轉換成0可以使其與一0-1矩陣P相等,則稱此0-1矩陣A包含0-1矩陣P,且該子矩陣稱為一個P的複製。若0-1矩陣A不包含P,且將任一個元素0轉換成1會使得矩陣A包含P ,那麼我們稱A是一個P的飽和矩陣。取自[1]和[2]的研究結果,我們將介紹有最大和最小數量的1的Ik的飽和矩陣和Jk的飽和矩陣,並將一些證明改的更精簡。
    另外,我們還會討論的是強制矩陣和置換趨避矩陣,這兩種都是行數和列數相同
    的矩陣。令A為一個n × n的0-1矩陣,若A所包含的每個大小為n × n的置換矩陣皆包
    含單位矩陣I3,那麼我們稱A是一個123-強制矩陣。若A所包含的每個n × n的置換矩陣
    皆不包含k × k的單位矩陣Ik ,那麼A被稱為一個12 . . . k-置換趨避矩陣。我們會仔細釐
    清[3]中對於有最大數量的1的123-強制矩陣的條件。最後,為了解決[1]中的一項未解問
    題,對於12 . . . k-置換趨避矩陣,我們猜想在任意n × n的12 . . . k-置換趨避矩陣中,0的最小數量為((n-k+2)¦2)。;A 0-1 matrix consists of entries that are either 0 or 1. A 0-1 matrix A contains a 0-1
    matrix P if A has a submatrix that can be made equal to P by changing any number
    of 1-entries to 0-entries. This submatrix is called a copy of P in A. A 0-1 matrix A is
    saturating for a 0-1 matrix P if A does not contain P, yet turning an arbitrary 0-entry of A into a 1-entry creates a copy of P in A. In the saturation problems, we introduce the results from [1] and [2] concerning the maximum and minimum numbers of 1-entries in matrices saturating for Ik and Jk, and succinctly rephrase some of the proofs. Another line of research focuses on square matrices. An n × n 0-1 matrix A is a 123-forcing matrix if every n × n permutation matrix in A contains the identity matrix I3. Conversely, an n × n 0-1 matrix A is 12..k-permutation-avoiding if none of n × n permutation matrix in A contains the identity matrix Ik. We clarify the characterization of 123-forcing matrices from [3] with the maximum number of 1-entries, and add missing parts to the original proof to make it complete. Finally, we conjecture that the minimum number of 0-entries in any n × n 12 . . . k-permutation-avoiding matrices is ((n-k+2)¦2), aiming to solve an open problem in [1].
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML23檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明