中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95753
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41636078      在线人数 : 1089
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95753


    题名: 利用遷移式學習對於腦部MRI影像之阿茲海默症疾病分類;Classification of Alzheimer′s disease in brain MRI images using transfer learning
    作者: 周大豐;Chou, Da-Feng
    贡献者: 數學系
    关键词: 深度學習;卷積神經網路;預訓練模型;阿茲海默症
    日期: 2024-07-23
    上传时间: 2024-10-09 17:15:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在利用深度學習方法對阿茲海默症患者進行分類,探索分析不同深度學
    習模型在分類任務中的表現。
    本研究收集了來自醫療公開數據庫來源的MRI影像數據,並使用多種深度學習方
    法進行分析。具體而言,我們應用了Keras提供的卷積神經網路(CNN)的預訓練模
    型,以提高分類的準確性和穩定性。在數據預處理階段,我們對數據進行了標準化處
    理,並且用OpenCV此套件對數據影像進行切割腦室與海馬體。實驗結果表明,基於
    深度學習的方法在阿茲海默症分類中具有顯著的優勢,能夠有效區分阿茲海默症患者。;With the acceleration of global aging, Alzheimer’s Disease (AD) has become a signifi
    cant public health issue. Accurate classification of AD is crucial for developing personalized
    treatment plans and prognosis evaluations.
    This study aims to classify Alzheimer’s disease patients by using deep learning methods
    and explore the performance of different deep learning models in classification tasks.
    The study collected MRI image data from publicly available medical databases and an
    alyzed it by using various deep learning methods. We applied pre-trained convolutional neu
    ral network (CNN) models provided by Keras to improve classification accuracy and stability.
    During the data preprocessing stage, we standardized the data and used the OpenCV library to
    segment the ventricles and hippocampus in the images. The experimental results indicate that
    deep learning-based methods have significant advantages in Alzheimer’s disease classification
    and can effectively distinguish Alzheimer’s disease patients.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML33检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明