中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95786
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41627549      Online Users : 2353
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95786


    Title: 基於通道拓樸增強圖卷積神經網絡之手語單詞辨識演算法;A CTRGCN-based model for Isolated Sign Language Recognition
    Authors: 董致輔;Tung, Chih-Fu
    Contributors: 資訊工程學系
    Keywords: 深度學習;骨架辨識;手語單詞辨識;圖卷積神經網路;Deep learning;Skeleton recognition;Sign language recognition;Graph convolutional neural network
    Date: 2024-08-12
    Issue Date: 2024-10-09 17:16:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,聽障人士的人口逐漸增長,大眾對於手語學習的需求也跟
    著逐年提升,然而,手語學習的困難度高,且學習資源有限,使得手語
    學習成為一個困難的任務。
    為了解決這個問題,本論文提出了一種基於通道拓樸增強圖卷積神
    經網絡(CTRGCN)的基於骨架手語單詞辨識演算法。本研究針對手語
    單詞辨識,設計了改良的CTRGCN 模型,並提出多分支的架構,以提高
    辨識準確度。我們使用WLASL100 數據集進行訓練,並與現有模型進行
    了的比較。結果顯示,我們的方法在多數情境下均優於現有技術,展示
    了其在手語單詞辨識上的潛力和實用性,並希望為手語學習提供更多的
    幫助。;In recent years, the population of hearing-impaired individuals has been
    gradually increasing, and the public’s demand for sign language learning has
    been steadily rising as well. However, the difficulty of learning sign language is
    high, and the learning resources are limited, making it a relatively challenging
    task.
    To address this issue, this paper proposes a Skeleton based sign language
    word recognition algorithm based on Channel-Topology Refinement Graph Convolutional
    Network (CTRGCN). This method tackles the challenges in sign language
    word recognition, by designing an improved CTRGCN model to enhance
    recognition accuracy. We trained the model using the WLASL100 dataset and
    compared it with existing models. The results demonstrate that our method outperforms
    existing techniques in most scenarios, showcasing its potential and
    practicality in sign language word recognition. We hope to provide more assistance
    for sign language learning through this approach.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML35View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明