中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96014
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41634943      Online Users : 2256
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/96014


    Title: Accelerated Point Cloud Rendering and Density Enhancement via Depth Completion: An Improved R3LIVE SLAM System Implementation
    Authors: 張凱東;Chang, Kai-Tung
    Contributors: 資訊工程學系
    Keywords: 同時定位與地圖構建;Simultaneous localization and mapping;SLAM
    Date: 2024-08-19
    Issue Date: 2024-10-09 21:52:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 同時定位與地圖構建(SLAM)系統分為傳統方法和基於機器學習的方法。傳統的 SLAM 系統採用幾何和概率模型在靜態環境中實現高精度,但在動態環境中面臨計算複雜性和適應性的挑戰。基於機器學習的 SLAM 系統利用深度學習,擅長處理非結構化數據和動態場景,但需要大量訓練數據,並且通常缺乏可解釋性。

    我們的目標是通過結合深度學習的模型來增強傳統的 SLAM 系統,使傳統的
    SLAM 系統更加強大和全面。本論文在 R3LIVE 框架下優化和加速了點雲渲染過程,並利用深度學習模型解決了因光達特性導致的建圖隙縫與漏洞。;Simultaneous Localization and Mapping (SLAM) systems are divided into traditional and machine learning-based methods. Traditional SLAM employs geometric and probabilistic models to achieve high precision in static environments but faces challenges with computational complexity and adaptability in dynamic environments.Machine learning-based SLAM, utilizing deep learning, excels in handling unstructured data and dynamic scenarios but requires substantial training data and often lacks interpretability.

    We aim to enhance traditional SLAM systems by incorporating the advantages of deep learning model, making traditional SLAM systems more robust and comprehensive. In this paper, we optimize and accelerate the point cloud rendering process under the R3LIVE framework and use a deep learning model to solve the mapping gaps caused by the characteristics of LiDAR
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML35View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明