English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47080433      線上人數 : 456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96053


    題名: Enhance Few-Shot Learning with Transformer Architectures
    作者: 黃文城;Ryan, Dick Hansel
    貢獻者: 人工智慧國際碩士學位學程
    關鍵詞: 小樣本學習;深度學習;密集網路;多頭注意力機制
    日期: 2024-11-15
    上傳時間: 2025-04-09 15:50:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著對深度學習模型在小數據集上高效表現需求的提升,小樣本學習( fewshot learning)逐漸成為一個熱門研究領域。其目標是在每個類別只有少量標註樣本的情況下訓練模型,並根據測試數據的處理方式分為歸納式( inductive)與轉導式( transductive)方法。本研究提出了一種基於 Transformer 架構的歸納式小樣本學習模型——DAPNet。該模型結合了密集網路( Dense Networks)與多頭注意力機制( Multi-Head Attention),並改進了激活函數,實現了 Ranger 優化器的應用,有效提升了準確性和訓練效率。我們在MiniImageNet和TieredImageNet 這兩個知名的小樣本學習基準數據集上對 DAPNet 進行了評估。結果顯示, DAPNet 在準確性方面優於或媲美當前的先進模型。;With the growing demand for deep learning models to excel on limited datasets, few-shot learning has gained prominence as a promising area of research. Its goal is to train models using only a few labeled examples per class. Depending on
    how test data is processed, few-shot learning methods are classified into inductive and transductive approaches. In this work, we present DAPNet, an inductive fewshot learning model based on the Transformer architecture. Our model incorporates Dense Networks and Multi-Head Attention, alongside modifications to the activation function and the implementation of the Ranger optimizer, which lead to enhanced accuracy and training efficiency. We evaluate DAPNet on two widely recognized benchmark datasets for few-shot learning: MiniImageNet and TieredImageNet. The experimental results show that DAPNet delivers outstanding performance, either exceeding or matching the accuracy of state-of-the-art models.
    顯示於類別:[人工智慧國際碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML57檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明