English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47077474      線上人數 : 430
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96163


    題名: 基於生成對抗式半監督學習之介電超穎介面設計;Design of Dielectric Metasurface Based on Generative Adversarial Semi-Supervised Learning
    作者: 侯明宏;HOU, MING-HUNG
    貢獻者: 光電科學與工程學系
    關鍵詞: 超穎介面;逆向設計
    日期: 2025-01-07
    上傳時間: 2025-04-09 16:15:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究針對超穎介面中,因為幾何結構與材料數據匱乏而導致設計困難,提出了解決方法以提升設計效率。為此我們採用了條件深度卷積生成對抗網路,通過學習光譜數據來訓練模型,實現了使用光譜特性即可預測幾何結構的能力。為了提高運算效率,我們使用了嚴格耦合波展開法,結合GPU加速運算,大幅提高光學響應計算的速度。我們構建了多種幾何結構與材料特性的資料庫,涵蓋不同波長下的穿透光譜資訊,其中包括x偏振光、y偏振光、左旋圓偏振光與右旋圓偏振光入射時的穿透光譜。通過嚴格耦合波展開法與條件深度卷積生成對抗網路結合,我們在設計階段能夠快速生成並驗證符合需求的奈米結構,大幅減少了傳統設計所需的計算時間與資源。這項基於人工智慧的逆向設計方法為超穎介面的設計提供了一種高效、精確的替代方案,並有望在光學元件的設計與開發中發揮重要作用。隨著AI模型的進一步完善,我們期望該方法能推動光學元件設計領域的發展,為未來的科學研究與工業應用提供強有力的支持。
    ;This thesis proposes a solution to the scarcity of geometric structures and material data while designing metasurface, so that the design efficiency can be improved. We employed a conditional deep convolutional generative adversarial network (cDCGAN), training the model by learning spectral data to enable the prediction of geometric structures based on spectral characteristics. To improve computational efficiency, we utilized the rigorous coupled-wave analysis (RCWA) method combined with GPU-accelerated computing, significantly increasing the speed of optical response calculations. We constructed a database of various geometric structures and material properties, encompassing transmission spectral information across different wavelengths, including transmission spectrum under incident x-polarized light, y-polarized light, left-handed circularly polarized light, and right-handed circularly polarized light. By integrating the RCWA with the cDCGAN, we can rapidly generate and validate nanoscale structures that satisfy design requirements during the design phase, greatly reducing the computational time and resources required by traditional methods. This artificial intelligencebased inverse design approach provides an efficient and precise alternative for designing metasurface and is expected to play a significant role in the design and development of optical components. With further advancements in AI models, we anticipate that this method will drive progress in the field of optical component design, offering robust support for future scientific research and industrial applications.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML52檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明