中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96189
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 46930286      線上人數 : 568
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96189


    題名: 應用脈衝雷射及電漿輔助原子層沉積搭配離子液體修飾LLZTO/Li界面提升鋰離子電池穩定性;Enhancing the stability of Li-ion battery by pulse laser and plasma-enhanced atomic layer deposition combined with ionic liquid modification of LLZTO/Li interface
    作者: 傅冠霖;Fu, Guan-Lin
    貢獻者: 材料科學與工程研究所
    關鍵詞: 鋰鑭鋯鉭氧;脈衝雷射;電漿原子層沉積;氧化鋁;偏鋁酸鋰;LLZTO;pulsed laser;plasma-enhanced atomic layer deposition;aluminum oxide;lithium aluminate
    日期: 2025-01-22
    上傳時間: 2025-04-09 16:55:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 在固態鋰金屬電池研究中,本研究旨在解決LLZTO固態電解質的兩大挑戰:固-固界面接觸不良和晶界漏電流。研究中分別採用Pulsed laser和PEALD技術對LLZTO表面進行修飾。
    首先,利用雷射技術修飾LLZTO表面,並探討不同雷射功率對電池性能的影響。結果顯示,使用2.5 W雷射修飾的LLZTO為最佳條件。SEM分析發現,LLZTO表面的孔隙被有效修補,XRD和Raman光譜則證實未生成LZO相。Li∣IL∣LLZTO(HCl)@L2.5∣IL∣Li電池的臨界電流密度(CCD)明顯提高至1.7 mA/cm²(相較於原先的0.4 mA/cm²)。在長時間循環測試中,極化電壓可穩定維持100小時(原本僅0.5小時即發生短路)。長時間循環後的SEM分析顯示,LLZTO橫截面上的鋰絲沉積顯著減少。
    針對Li∣IL∣LLZTO(HCl)@L2.5∣IL∣LFP全電池,其在0.1、0.2、0.5、1、2 C梯度倍率下的比電容量分別為137、135、130、124、120 mAh/g,明顯優於原先的123、121、119、115、108 mAh/g,同時高倍率性能下的容量衰退亦顯著受到抑制。 
    接下來,應用PEALD技術在LLZTO表面沉積氧化鋁作為氧化保護層,並探討不同沉積循環數及後處理方式對電池性能的影響。最佳條件為在LLZTO表面沉積25個循環數的氧化鋁,並結合退火及酸蝕處理。XPS分析顯示,PEALD沉積氧化鋁薄膜的同時,會形成碳酸鋰和偏氧酸鋁。退火處理可降低碳酸鋰和氧化鋁的比例,並提高偏鋁酸鋰的比例;Raman分析則證實,酸蝕處理能有效移除表面的碳酸鋰。
    在此條件下,Li∣IL∣LLZTO(HCl)@AA25AE∣IL∣Li電池的CCD提高至1.2 mA/cm²(原先為0.8 mA/cm²),且長時間循環測試中,極化電壓穩定維持100小時(原本僅0.5小時即短路)。長時間循環後,SEM分析亦顯示LLZTO橫截面上的鋰絲沉積程度減輕。
    綜上所述,經修飾的LLZTO能有效實現充放電過程中的電流均勻分布,大幅提升鋰對稱電池的臨界電流密度和長時間循環性能,同時顯著提高全電池在倍率性能下的比電容量,這是固態鋰金屬電池發展中的重要技術突破。;This study focuses on addressing two critical challenges in solid-state electrolyte lithium metal batteries with LLZTO solid electrolytes: poor solid-solid interfacial contact and grain boundary leakage currents. Surface modifications of LLZTO were carried out using pulsed laser and PEALD techniques. Initially, laser technology was employed to modify the LLZTO surface, and the impact of various laser power levels on battery performance was investigated. The LLZTO modified with a 2.5 W laser demonstrated optimal properties. SEM analysis confirmed that surface pores were effectively repaired, while XRD and Raman spectroscopy verified the absence of LZO.

    The Li∣IL∣LLZTO(HCl)@L2.5∣IL∣Li cell exhibited a significant increase in the critical current density (CCD), reaching 1.7 mA/cm² compared to the initial CCD of 0.4 mA/cm². During long-term cycling, the polarization voltage remained stable for 100 hours, a substantial improvement over the 0.5 hours observed before short-circuiting. Post-cycling SEM analysis revealed a marked reduction in lithium filament deposition on the LLZTO cross-section.

    For the Li∣IL∣LLZTO(HCl)@L2.5∣IL∣LFP cell, the specific capacities at 0.1, 0.2, 0.5, 1, and 2 C were 137, 135, 130, 124, and 120 mAh/g, respectively, surpassing the original values of 123, 121, 119, 115, and 108 mAh/g. Furthermore, the capacity fade under high-rate performance was significantly suppressed. 
    The application of PEALD technology involves depositing aluminum oxide as an oxidation protection layer on LLZTO surfaces and examining the effects of deposition cycles and post-treatment methods on battery performance. Optimal conditions were achieved with 25 PEALD cycles, combined with annealing and acid etching. XPS analysis revealed that PEALD forms lithium carbonate and aluminum hydroxide, while annealing reduced these and increased lithium aluminate. Raman analysis confirmed that acid etching effectively removed surface lithium carbonate.

    Under these conditions, the CCD of the Li∣IL∣LLZTO(HCl)@AA25AE∣IL∣Li cell increased to 1.2 mA/cm² (from 0.8 mA/cm²), and the polarization voltage remained stable for 100 hours during cycling (vs. 0.5 hours in the original configuration). SEM analysis post-cycling showed reduced lithium filament deposition on the LLZTO cross-section.

    In conclusion, modified LLZTO achieved uniform current distribution during charge-discharge, significantly enhancing critical current density, long-term cycling performance, and specific capacity under high c-rate conditions. This marks a key breakthrough in solid-state lithium-metal battery development.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML42檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明