English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 47073685      線上人數 : 461
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96301


    題名: ReActNet-XGBoost 硬體加速器設計與實現——資源受限場景的應用探索;ReActNet-XGBoost Hardware Accelerator: Design, Implementation, and Application Exploration in Resource-Constrained Scenarios
    作者: 蕭如珊;Hsiao, Ju-Shan
    貢獻者: 資訊工程學系
    關鍵詞: 二值卷積神經網路;硬體加速器;邊緣裝置;資源受限應用;Binary Convolutional Neural Network;Hardware Accelerator;Edge Devices;Resource-Constrained Applications
    日期: 2025-01-21
    上傳時間: 2025-04-09 17:38:22 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著工業 4.0 和邊緣運算技術的快速發展,智慧醫療與工業監控等場景對
    即時資料處理和智慧化分析提出了高效能、低功耗與資源優化的嚴苛需求。然而,傳統卷積神經網路 (CNN) 因其高運算量與記憶體需求,難以滿足資源受限邊緣裝置的應用場景。為解決此一挑戰,本研究提出了一種結合 ReActNet 架構與 XGBoost 分類器的硬體加速器,專注於一維時間序列資料的處理。
    本設計以 1D CNN 的輕量化特性為基礎,通過二值卷積技術顯著降低運算
    負擔,嘗試取得低功耗與高準確度之間的平衡,並且為智慧醫療中的生理 訊號監測以及工業監控中的設備異常檢測提供了創新的解決方案,展現出應用於資源受限邊緣裝置的潛力。;With the rapid advancement of Industry 4.0 and edge computing technologies, applications in smart healthcare and industrial monitoring demand highly efficient, low-power, and resource-optimized solutions for real-time data processing and intelligent analysis. However, traditional convolutional neural networks (CNNs), with their significant computational and memory requirements, struggle to meet the constraints of resource-limited edge devices. Addressing these challenges, this study introduces a hardware accelerator combining the ReActNet architecture with an XGBoost classifier, specifically designed for processing one-dimensional time-series data.
    Built upon the lightweight characteristics of 1D CNNs, the proposed design leverages binary convolution techniques to significantly reduce computational overhead, aiming to achieve an optimal balance between low power consumption and high accuracy. This innovative approach offers promising solutions for real-time physiological signal monitoring in smart healthcare and anomaly detection in industrial monitoring, demonstrating substantial potential for deployment in resource-constrained edge devices.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML20檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明