English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 57292576      線上人數 : 16918
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97193


    題名: 多模式股票價格預測;Multimodal Stock Price Forecasting
    作者: 吳德安;Wijaya, Danang
    貢獻者: 人工智慧國際碩士學位學程
    關鍵詞: 半強形式效率;股票價格預測;大型語言模型;多模態整合;交叉注意力;Semi-strong form efficiency;stock price forecasting;large language model;multimodal fusion;cross-attention
    日期: 2025-08-27
    上傳時間: 2025-10-17 10:57:23 (UTC+8)
    出版者: 國立中央大學
    摘要: 每日股價的短期預測準確度,可以透過採用半強式市場效率(Semi-strong form efficiency)大幅提升,此方法結合了數值市場數據與公開新聞資訊。我們提出兩種統一的多模態預測框架,將最先進的時間序列模型與預訓練大型語言模型(LLM)嵌入結合起來:方法一將每一種模態分別處理,使用先進的時間序列模型與基於LSTM的文本投影對LLM嵌入進行處理,然後通過交叉注意力機制與加性晚期融合進行結合;方法二則在網絡初期即將所有特徵串接融合。我們在TSMC每日股價資料上進行實驗,配合來自NYSE市場的英文Bloomberg新聞與TWSE市場的繁體中文ETToday新聞。結果顯示,方法一在一至四步的預測中,始終優於單模態(Random Walk, NLinear、iTransformer)與多模態(MM TSFlib)基準模型,展現出最低的預測誤差,而方法二表現則相對較差。消融實驗證實交叉注意力機制能進一步提升預測效能。與通用語言模型相比,經過領域調適的文本嵌入可進一步降低預測誤差,而使用先進大型語言模型進行新聞摘要亦帶來些微改進。本研究結果顯示,透過整合數值與公開新聞文本資料,並採用加性晚期融合、交叉注意力模組、領域專屬文本嵌入與高品質新聞摘要,能實現一種簡潔卻強大的方式,有效提升短期股價預測的準確性與穩定性,展現出半強式效率模型的實際應用潛力。;Accurate short-term forecasting of daily stock prices can be significantly enhanced by adopting the Semi-strong form efficiency, which integrates numerical market data with public news. We propose two unified multimodal frameworks that combine state-of-the-art time series models with pre-trained large language model embeddings: The proposed method 1 processes each modality independently with state-of-the-art time series models, LLM embeddings with LSTM-based text projection, followed by a cross-attention mechanism and additive late fusion, while the proposed method 2 concatenates features early in the network. Experiments on TSMC daily stock data with English news from Bloomberg on the NYSE market and Traditional Chinese news from ETToday on the TWSE market show that the proposed method 1 consistently achieves the lowest one-to-four-step forecast errors against unimodal (Random Walk, NLinear, iTransformer) and multimodal (MM TSFlib) baselines, whereas proposed method 2 underperforms. Ablation studies confirm that cross-attention yields additional gains. Domain-adapted text embeddings further reduce forecasting error compared to general-purpose models, and the news text summarization with advanced large language models delivers marginal improvements. These findings demonstrate that semi-strong from efficiency method by integrating numerical and public news text data using late additive fusion, cross-attention modules, domain-specific text embedding, and high-quality news text summarization constitutes a simple yet powerful approach for improving the accuracy and stability of short-term stock price forecasts.
    顯示於類別:[人工智慧國際碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML7檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明