中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97233
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59652095      在线人数 : 776
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97233


    题名: 石灰石混合水泥之工程性能研究;Research on the Engineering Performance of Limestone Blended Cement
    作者: 余丞軒;Yu, Cheng-Xuan
    贡献者: 土木工程學系
    关键词: 石灰石混合水泥;輔助膠結材料;工程性能;預測模型;3D列印混凝土;Limestone blended cement;Supplementary cementitious materials;Engineering properties;Predictive modeling;3D printing concrete
    日期: 2025-07-10
    上传时间: 2025-10-17 11:00:47 (UTC+8)
    出版者: 國立中央大學
    摘要: 水泥製造約占全球人為溫室氣體排放的 7%,其中普通卜特蘭水泥須經高溫煅燒,單位碳排約為 910 kg CO₂e/ton,對台灣邁向淨零碳排構成重大挑戰。相較之下,石灰石粉(LSP)無須煅燒,碳排僅約 0.008 kgCO₂e/ton,且具備易取得、成本低廉與穩定性高等優勢,近年被視為極具潛力的輔助膠結材料(SCM)。
    根據全球建築氣候追蹤指標之分析,為實現淨零排放目標,全球營建產業每年需減少約 10% 的二氧化碳排放,方能符合減碳路徑。國際水泥永續倡議亦指出,為因應此趨勢,應提高LSP在膠結材料中的使用比例。因此,本研究旨在探討提高 LSP 摻量的可行性,並進一步評估其與其他SCM(矽灰、水淬爐石粉、飛灰與煅燒黏土)的複合應用效果。重點將放在複合設計下的物理與化學複合作用,以及其對工程性質之影響。此外,鑑於 3D 列印混凝土等應用場景對膠結材料需求量較高,本研究亦納入此類高膠結系統作為評估對象,藉此探討 LSP 在數位建造環境中的應用潛力。
    本研究規劃五階段試驗流程。其中,第一階段以卜特蘭I型(IPC)與卜特蘭II型(IIPC)水泥為對象,額外摻入之 LSP,製成非共磨型石灰石水泥(ILPC),探討四種粒徑(33.5、23.5、12.6 及 1.25 μm)與不同摻量(0 % ~ 60 %)對工程性質與減碳潛力之影響;第二階段評估矽灰(SF)、水淬爐石粉(BFS) 、燃煤飛灰(FA) 、煅燒黏土(CC) 、爐灰(SA)於共磨型ILPC 中之適應性,探討其於取代水泥體積 0 % ~ 60 % 範圍內對共磨型ILPC 工程性質的影響;第三階段以非共磨型 IL 水泥砂漿為基體,在高 LSP 摻量(固定體積取代 35 % IPC)條件下,評估 SCM 對稀釋效應的抵銷能力、工程性質與減碳效益之改善效果;第四階段以 IT 型(三元或四元)水泥砂漿基體,探討在 SCM 總摻量高達 40 % 之設計下,以 LSP 部分取代 SCM(20 %)之可行性;第五階段則驗證上述階段所篩選出具潛力之配比,對其進行應用於 3D 列印混凝土中之可列印性評估,並探討其在3D列印工藝下對力學性質之影響情況,評估其在3D列印下之應用潛力。
    研究成果顯示,粗粒徑 LSP(33.5 ~ 10 μm)展現良好填充效應與早期強度貢獻,微米級 LSP(<10 μm)則因其高比表面積具成核潛力,可於不明顯影響力學性能下提高摻量,進一步增強減碳效果。然而,相較於粗粒徑LSP,微米級LSP對於材料之硫酸鹽抗性與流動性能造成的負面影響更為明顯,應於實際應用中審慎考量其配比設計與性能取捨。此外,當 LSP 摻量超過體積比 20 %,且未搭配高活性SCM 時,工程性質逐漸受到稀釋效應主導,導致試體抗壓強度折減逾 25%,抗硫性能亦由高度等級轉為中度,對力學與耐久性能產生明顯負面影響。
    本研究運用曲面擬合分析,探討LSP對水泥所帶來之工程性質影響,建立多項具高解釋力之性能預測模型,以等值線圖圖像化整體趨勢,並經文獻數據比對驗證可信度達 93.7 %,具安全性與耐久性預測能力,且具備實務應用潛力。也進一步探討 LSP 與 C₃A 反應機制,建構出硫酸鹽侵蝕境下的配比邊界條件。
    在 SCM 應用方面,CC、BFS與SA可促進穩定碳鋁酸鹽(MC、HC)生成,搭配卜作嵐反應,能有效抵銷高摻量LSP 所造成之稀釋效應。研究結果顯示,當 LSP 與 SCM 合計替代率超過 55 % 時(如配比ILU25BFS30、ILC25SA30與ILBFS40LU20),整體工程性能仍符合 CNS 15286 標準規範,且膠結材料碳排可由 910 降至 442 kg CO₂e/ton ,減碳幅度達 51 %,符合 GCCA 評級系統中 C 級以上等級。在新興技術應用方面,ILU25BFS30 配比於 3D 列印混凝土中展現良好觸變性與建造性,tanθ 與高度損失率皆控制於可接受範圍內,具備數位建造應用潛力。
    本研究整合 LSP 的材料特性、配合 SCM 使用的適應性、微觀反應機制與碳排效益分析,建立一套兼顧工程性能、安全性與永續性的低碳水泥設計策略。研究成果除涵蓋 LSP 粒徑與摻量參數優化、LSP 四大效應(填充、成核、稀釋、化學)分析、SCM 複合效應探討、減碳效益量化與性能預測模型建立外,亦可作為未來水泥系統模組化設計與 3D 列印材料開發的參考,希冀對營建產業邁向低碳轉型具有實質助益。
    ;Cement production is responsible for approximately 7% of global anthropogenic greenhouse gas emissions. The manufacture of ordinary Portland cement emits around 910 kg CO₂-equivalent per ton, primarily due to the energy-intensive calcination of limestone. This presents a substantial barrier to achieving global net-zero carbon targets, such as those set forth in Taiwan’s national roadmap. In contrast, the direct incorporation of limestone powder (LSP) as a supplementary cementitious material (SCM) offers a promising low-carbon alternative, as its production bypasses the calcination process and results in an extremely low carbon footprint (~ 0.008 kg CO₂e/ton). Owing to its widespread availability and low cost, LSP is considered a viable component in sustainable materials. As emphasized by the Global Building Climate Tracker, the construction sector must reduce its carbon emissions by approximately 10% annually to remain aligned with net-zero trajectories. In response to this imperative, the Cement Sustainability Initiative (CSI) strongly advocates for the increased utilization of LSP in cementitious systems.
    This study aims to evaluate the feasibility of increasing LSP content in cementitious binders and its combined use with other SCMs—including silica fume (SF), granulated blast-furnace slag (BFS), fly ash (FA), calcined clay (CC), and slag ash (SA)—to develop more sustainable cement systems. The research focuses on the physical and chemical synergistic effects in these blended binders and the consequent impacts on engineering properties and durability. Given the high binder demand in emerging applications such as 3D concrete printing, the potential of LSP in digital construction was also investigated.
    The experimental program comprised five stages. Stage 1 examined how LSP particle size (33.5, 23.5, 12.6, and 1.25 μm) and dosage (0–60% by volume of binder) affect the engineering properties and carbon reduction potential of limestone-blended cements using Type I and Type II Portland cement bases. Stage 2 evaluated co-ground Portland–limestone cements incorporating various SCMs (SF, BFS, FA, CC, and bottom ash), focusing on compatibility and performance when 0–60% of the cement (by volume) was replaced. Stage 3 investigated high-LSP-content mortar (35% LSP by volume in a Type I cement binder), assessing the mitigation of dilution effects by different SCMs and the resultant properties and carbon savings. Stage 4 explored ternary and quaternary binder systems (up to 40% total SCM replacement), where 20% of a given SCM was substituted with LSP to test feasibility and performance limits. Stage 5 evaluated the printability (thixotropy and buildability) and mechanical performance of selected high-LSP mixtures for application in 3D printing concrete(3DPC)
    Key findings demonstrate that coarser LSP particles (10 ~ 33 μm) primarily act as fillers, improving particle packing and contributing to early-age strength, whereas sub-micron LSP (< 10 μm) provides a high surface area that promotes nucleation of hydration products. The finer LSP allowed higher replacement levels without significant strength loss, thereby enhancing overall CO₂ reduction. However, excessive sub-micron LSP led to more pronounced workability challenges and reduced sulfate resistance compared to coarser LSP, highlighting the need to balance particle size distributions in practice. In the absence of highly active SCMs, LSP replacement levels above ~20% by volume were found to trigger strong dilution effects, causing over 25% drops in 28-day compressive strength and significantly impairing sulfate resistance.Predictive models with high explanatory power were developed via surface-fitting analyses to quantify the adverse impacts of increased LSP content. These models—visualized as contour maps and validated against literature data (~ 93.7% confidence)—enable reliable prediction of durability performance and safety margins for various LSP-blended cement formulations. Furthermore, the underlying reaction mechanisms between LSP and C₃A (tricalcium aluminate) were elucidated, allowing the delineation of mix design boundaries to maintain sulfate resistance.
    The incorporation of alumina-rich SCMs (particularly calcined clay, BFS, and bottom ash) proved effective in mitigating the dilution effect at high LSP contents. These SCMs promoted the formation of stable carboaluminate phases (monocarboaluminate and hemicarboaluminate) through pozzolanic reactions, which improved later-age strength and durability. Notably, binder systems with combined LSP+SCM replacement levels exceeding 55% by volume (for example, experimental blends ILU25BFS30, ILC25SA30, and ILBFS40LU20) still met the strength and durability requirements of the CNS 15286 standard. Such high-replacement mixes achieved a reduction in binder-related CO₂ emissions from ~910 to 442 kg CO₂e per ton (~51% reduction), corresponding to a Global Cement and Concrete Association (GCCA) carbon classification of “C” or better. One optimized formulation (ILU25BFS30) also exhibited excellent rheological properties for 3D printing, including high thixotropy with good shape retention (tan θ) and minimal height loss, indicating its promise for digital construction applications.
    Overall, this research provides a comprehensive strategy for designing low-carbon cementitious materials that balance engineering performance, durability, and sustainability. The findings offer practical guidance on optimizing LSP particle size and content, understanding LSP’s multifaceted role in cement hydration (filler, nucleation, dilution, chemical effects), and leveraging composite SCM blends to maximize carbon reduction without compromising concrete quality. The developed predictive models and clarified mechanisms can serve as valuable tools for the future design of modular cement systems and advanced construction materials (e.g., 3DPC), supporting the construction industry’s transition towards net-zero carbon emissions.
    显示于类别:[土木工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML16检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明