中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97267
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56154307      線上人數 : 1084
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97267


    題名: 基於Autoencoder及XGBoost方法於預診斷與健康管理模型應用─以A公司塗佈機為例;Prognostics and Health Management Research Based on Autoencoder and XGBoost Model – A Case Study of Company A’s Coating Machine
    作者: 陳韻雅;Chen, Yun-Ya
    貢獻者: 工業管理研究所
    關鍵詞: 智慧製造;預測性維護;機器學習;自動編碼器;極限梯度提升決策樹;異常檢測;XGBoost
    日期: 2025-07-01
    上傳時間: 2025-10-17 11:04:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究以工業4.0與智慧製造興起之背景為出發點,製造業中確保生產連續性與降低維護成本成為關鍵課題,而隨著物聯網與感測器在各產業中普及,企業能以更低成本收集大量數據,並透過大數據與人工智慧方法,制定主動式預測性維護(Predictive Maintenance, PdM)策略。
    A公司塗佈機具備大量感測器數據,其資料集具有時間序列性、高維度與異常樣本不平衡問題,而本研究針對這些特性,採用自動編碼器(Autoencoder)搭配極限梯度提升決策樹(eXtreme Gradient Boosting, XGBoost),提出一數據驅動之異常預測模型。先以自動編碼器對原始高維特徵進行壓縮並提取關鍵特徵,再將瓶頸層輸出作為XGBoost模型輸入進行監督式訓練,透過其二階導數、貪婪演算法,學習各特徵與異常之間的複雜非線性關係,使模型在異常辨識上有一定程度之準確性與穩定性。
    本研究完整呈現資料前處理流程與模型建構過程,透過系統化的架構測試與超參數調整,最終選擇最佳參數組合:學習率0.005搭配決策樹數量800、最大深度3與調整異常樣本權重為6,並於測試集上獲得99.99%的整體準確率,其餘各項評估指標皆大於0.92,在精確率與召回率間取得最佳平衡,後續模型於推論階段也具備良好判別力。而為了強化實務應用性,進一步設計健康指數(Health Score)計算方法作為設備健康狀態衡量指標,並制定三級維護策略,能依據不同程度採取相應措施,有效支援預測、監測與決策支援三大功能,實現預診斷與健康管理(PHM)完整概念。
    ;This study is motivated by the emergence of Industry 4.0 and smart manufacturing, where ensuring production capacity and reducing maintenance costs have become critical challenges for the manufacturing industry. With the widespread adoption of IoT and sensor technologies across industries, enterprises can now collect large volumes of data at low cost and leverage big data analytics and artificial intelligence techniques to implement proactive Predictive Maintenance (PdM) strategies.
    Focusing on a coating machine from Company A, which generates a high-dimensional, time-series dataset with a significant class imbalance, this research proposes a data-driven anomaly prediction model based on the integration of an Autoencoder and eXtreme Gradient Boosting (XGBoost). The Autoencoder is first used to compress the original high-dimensional features and extract latent representations, which are subsequently used as input for the supervised XGBoost model. Through second-order optimization and an exact greedy algorithm, XGBoost effectively captures the complex nonlinear relationships between features and anomalies, yielding reliable and accurate anomaly detection performance.
    This study presents a comprehensive workflow including data preprocessing and model construction. Through systematic architecture testing and hyperparameter tuning, the optimal parameter combination was determined, consisting of a learning rate of 0.005, 800 decision trees, a maximum tree depth of 3, and an anomaly sample weight adjustment of 6. The model achieved an overall accuracy of 99.99% on the test dataset, with all other evaluation metrics exceeding 0.92, demonstrating an optimal balance between precision and recall. To enhance practical applicability, we designed a Health Score calculation method to serve as an indicator of equipment condition and established a three-tiered maintenance strategy to effectively support prognostics, monitoring, and decision-making, thereby realizing the complete concept of Prognostics and Health Management (PHM).
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明