English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 58996568      線上人數 : 11300
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97269


    題名: 同化GNSS RO對TAHOPE IOP3梅雨鋒面個案降雨預報之影響;Impact of GNSS RO assimilation on rainfall forecast for TAHOPE IOP3 Meiyu front case
    作者: 區世明;Ao, Sai-Meng
    貢獻者: 大氣科學學系
    關鍵詞: 掩星技術;資料同化;梅雨鋒面;降雨;非局地溢相位
    日期: 2025-07-24
    上傳時間: 2025-10-17 11:04:18 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在探討同化福爾摩沙衛星七號(FORMOSAT-7/COSMIC-2)全球
    導航衛星系統掩星觀測(GNSS RO)對梅雨鋒面個案降雨預報的影響。以
    2022 年6月6–7日發生於臺灣的梅雨鋒面豪雨個案(TAHOPE IOP3)為研究
    對象,使用WRFDA混合資料同化系統(3DEnVar)進行同化實驗,同化
    FORMOSAT-7 GNSS RO 資料及全球電信系統(GTS)常規觀測,並使用ERA5再分析資料進行預報效果驗證。
    結果顯示,同化GNSS RO資料(EPH組)顯著改善模式初始分析場的水
    汽與溫度結構,特別是在鋒面附近增加南側海洋上低層水汽含量,降低鋒面附近的溫度場誤差,改善了鋒面的結構特徵,使分析場更貼近ERA5再分析資料。此外,透過模式對不同降雨時段的詳細暴雨成因分析可知,同化GNSS RO資料可更準確捕捉鋒面附近的水汽輻合與對流發展過程,有效提升降水位置及強度的預報表現。同時,透過系集敏感度分析顯示,GNSS RO資料的加入有助於降低系集預報的不確定性,增強系集成員間降雨預報的一致性,尤其對短期(0–24小時)降雨預報的改善最為顯著。整體而言,EPH組在各個預報時段內的均方根誤差(RMSE)均較僅同化GTS組顯著降低,空間相關係數(SCC)則顯著提升。
    綜合而言,本研究證實同化FORMOSAT-7 GNSS RO資料能有效提升梅雨
    鋒面豪雨個案的預報性能,尤其在暴雨成因分析與系集預報穩定性方面的提升更具實際預報價值。;This study examines the impact of assimilating Global Navigation Satellite System Radio Occultation (GNSS RO) observations on the rainfall forecast of a Mei-Yu frontal
    heavy precipitation event that occurred on 6–7 June 2022 (TAHOPE IOP3). The Weather Research and Forecasting (WRF) model, coupled with the hybrid three dimensional ensemble-variational (3DEnVar) data assimilation system (WRFDA), was employed to incorporate both GNSS RO and conventional observations into the model’s initial conditions.

    To evaluate the influence of GNSS RO assimilation, a simulation experiment that assimilated both GNSS RO and conventional data (referred to as EPH) was compared with a control experiment that assimilated only conventional observations (referred to as GTS). The results demonstrated that GNSS RO assimilation notably improved the moisture and temperature distributions near the Mei-Yu front, yielding a frontal structure more consistent with the ERA5 reanalysis.

    Compared to the GTS experiment, the EPH simulation exhibited lower forecast errors and higher correlation coefficients for temperature, moisture, and wind fields. In terms of precipitation, the EPH experiment more accurately reproduced both the spatial distribution and intensity of the heavy rainfall along the front. Forecast verification
    metrics further confirmed that the EPH outperformed the GTS run.

    In summary, assimilating GNSS RO observations significantly enhanced the model analysis and precipitation forecast for this Mei-Yu frontal heavy rainfall event.
    顯示於類別:[大氣物理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML16檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明