English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56129896      線上人數 : 888
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97283


    題名: 應用Transformer模型於預診斷與健康管理模型之研究-以A公司塗佈機為例;Research on the Application of Transformer Models in Prognostics and Health Management –– A Case Study of Company A’s Coating Machine
    作者: 廖浚廷;Liao, Jun-Ting
    貢獻者: 工業管理研究所
    關鍵詞: 預診斷與健康管理;深度學習;異常偵測;Transformer;Prognostics and Health Management;Deep Learning;Anomaly Detection;Transformer
    日期: 2025-07-12
    上傳時間: 2025-10-17 11:05:20 (UTC+8)
    出版者: 國立中央大學
    摘要: 在工業4.0 時代,製造業為提升生產效率與產品品質,導入智慧製造以強化競爭力,透過整合物聯網 (IoT)、雲端運算(Cloud Computing) 及大數據分析(Big Data Analytics),使企業能夠即時監控生產設備狀態、優化生產流程,並提升決策精準度。傳統的設備維護方式,往往難以有效預防突發故障,導致非計畫性停機 (Unplanned Downtime),進而影響生產排程,甚至造成重大經濟損失。為解決此問題,企業開始採用數據驅動的智慧維護策略,透過感測器持續收集設備運行數據,並結合人工智慧(AI)與深度學習(Deep Learning)來進行數據分析與識別異常,應用於設備故障預測與診斷,以提升維護效率。
    本研究以A公司塗佈機的歷史運行數據為基礎,採用預診斷與健康管理為維護策略。Transformer模型已被廣泛運用於各類序列任務中,因此本研究選用基於Transformer架構的PatchTST模型進行異常預測,目標為降低生產設備的意外停機風險並減少維護成本。最終模型於測試資料上達到 F1 Score 為 58.43%、Precision 為 53.04%、Recall 為 65.03% 的表現,雖未達到理想準確度,結果仍顯示Transformer在異常偵測任務上具備一定的潛在應用性,值得後續進一步優化與研究。
    ;In the era of Industry 4.0, the manufacturing sector strives to enhance production efficiency and product quality by adopting smart manufacturing to strengthen its competitiveness. Through the integration of the Internet of Things (IoT), cloud computing, and big data analytics, enterprises can monitor equipment status in real time, optimize production processes, and improve decision-making accuracy. Traditional maintenance strategies often struggle to effectively prevent unexpected equipment failures, leading to unplanned downtime that disrupts production schedules and causes significant economic losses. To address this issue, companies are turning to data-driven intelligent maintenance strategies, continuously collecting operational data from sensors and applying artificial intelligence (AI) and deep learning techniques for anomaly detection and fault prediction, thereby improving maintenance efficiency.
    This study is based on historical operation data from Company A′s coating machine, adopting predictive diagnostics and health management as the maintenance strategy. Given the widespread application of Transformer-based models in various sequence tasks, this research employs the PatchTST model, built on the Transformer architecture, to perform anomaly prediction with the goal of reducing unexpected equipment downtime and minimizing maintenance costs. The final model achieved an F1 Score of 58.43%, Precision of 53.04%, and Recall of 65.03% on the test dataset. Although the accuracy did not reach an ideal level, the results suggest that the Transformer architecture holds potential for anomaly detection tasks and merits further optimization and investigation.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明