中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97284
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59649372      在线人数 : 860
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97284


    题名: 利用分子動力學模擬金屬板在彈道撞擊下的力學行為;Mechanical behavior of metallic plate to ballistic impact by using Molecular Dynamics
    作者: 林聿軒;Lin, Yu-Xuan
    贡献者: 土木工程學系
    关键词: 分子動力學;力學行為;Molecular dynamics;mechanical behavior
    日期: 2025-07-24
    上传时间: 2025-10-17 11:05:20 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文以分子動力學模擬為工具,探討奈米尺度下金屬材料於高速撞擊作用下的力學行為與破壞機制。選用在航太與結構工程中常見的鋁、鈦與鈦鋁合金作為模擬材料,針對不同子彈幾何形狀(球形與圓柱形)、板材厚度(4a、6a、12a)及撞擊速度進行系統性模擬分析。模擬使用LAMMPS進行原子運動模擬,並結合OVITO可視化工具解析破壞行為,探討穿透行為與剪切模數計算等物理量之變化。
    模擬結果顯示,材料本身的機械性質對穿透行為具有顯著影響。鋁材料因晶體結構鬆散,在較低速度下即產生完全貫穿,顯示其抗穿透能力較弱;鈦材料則需更高速度才會發生貫穿,但其破壞形貌較不穩定。相較之下,鈦鋁合金兼具強度與延展性,不僅穿透所需能量較高,其破壞範圍也相對集中且形貌穩定。不同厚度的板材也呈現明顯差異,厚度增加有助於吸收更多能量,提升抗穿透能力;而子彈幾何形狀則對破壞模式造成影響,球形子彈常見沙漏狀破壞,圓柱形子彈則產生較集中且對稱的擴張輪廓。這些破壞行為與宏觀結構中常見的剪切破壞形貌相似,說明即使在奈米尺度下,模擬仍能顯示材料受集中載荷下的真實反應。
    綜合而言,本研究驗證分子動力學模擬在捕捉穿透破壞行為上的可行性,並指出材料性質、幾何形狀與厚度配置在撞擊防護應用上的關鍵角色。研究結果可作為設計高性能奈米防護結構與材料的理論依據,並為跨尺度材料力學行為的模擬提供具體參考。
    ;This thesis employs Molecular Dynamics simulations to investigate the mechanical behavior and failure mechanisms of metallic materials under high-velocity impact at the nanoscale. Common aerospace and structural engineering materials, including aluminum, titanium, and titanium–aluminum alloys, are selected as the simulation targets. Systematic simulations are conducted to examine the effects of different bullet geometries (spherical and cylindrical), plate thicknesses (4a, 6a, and 12a), and impact velocities.
    The simulations are performed using LAMMPS to track atomic motions, and OVITO is utilized for visualizing and analyzing the failure behavior, including penetration phenomena and variations in physical quantities such as shear modulus.
    The results show that the intrinsic mechanical properties of the materials significantly influence penetration behavior. Due to its relatively loose crystal structure, aluminum undergoes full perforation at lower velocities, indicating a weaker resistance to penetration. In contrast, titanium requires a higher impact velocity to be penetrated, though its failure morphology appears more unstable. Titanium–aluminum alloys, combining strength and ductility, demonstrate superior resistance by requiring more energy to penetrate and exhibiting more concentrated and stable damage patterns.
    Variations in plate thickness also lead to clear differences: increased thickness enhances energy absorption and improves penetration resistance. Meanwhile, bullet geometry affects the failure mode—spherical bullets tend to produce hourglass-shaped damage, while cylindrical bullets create more focused and symmetric expansion contours. These damage morphologies are consistent with shear failure patterns observed in macroscopic structures, suggesting that MD simulations at the nanoscale can still capture realistic material responses under localized loading.
    In summary, this study validates the feasibility of molecular dynamics simulations in capturing penetration failure behaviors and highlights the critical roles of material properties, geometry, and thickness configuration in impact protection applications. The findings provide theoretical insights for the design of high-performance nanoscale protective structures and offer valuable references for multiscale modeling of material mechanical behavior.
    显示于类别:[土木工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML15检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明