中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97304
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56140575      Online Users : 587
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97304


    Title: 基於WTTELSTM-GAN與Weibull Distribution預測剩餘失效時間的混合模型;A Hybrid Remaining Useful Life Prediction Model Based on WTTELSTM-GAN and Weibull Distribution
    Authors: 石鉦頡;SHIH, CHENG-CHIEH
    Contributors: 工業管理研究所
    Keywords: 預測與健康維護;預測剩餘失效時間;Prognostics Health Management;Remaining Useful Life;Weibull Distribution;WTTELSTM-GAN
    Date: 2025-07-21
    Issue Date: 2025-10-17 11:06:57 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在工業設備持續朝自動化與智慧化發展的趨勢下,設備健康監測(PHM)與剩餘使
    用壽命(RUL)預測已成為提升工廠效率與安全性的重要工具。儘管傳統統計方法與機
    器學習模型已被廣泛應用於此類任務,然而在處理高變異性、非線性退化與資料不平衡
    問題時,常面臨準確度不足與泛化能力薄弱的挑戰。近年來,深度學習方法雖展現優異
    表現,卻普遍仰賴大量完整退化資料,且缺乏明確的解釋性與物理對應性。
    本研究針對此問題提出一套創新的資料生成與預測架構 —— WTTELSTMGAN(Wavelet-Temporal-Transformer Enhanced LSTM GAN)。本方法整合小波轉換的時
    頻解析特性、雙向 LSTM 的時序記憶能力與多頭注意力機制的特徵聚焦優勢,能有效
    模擬機械退化過程中的 RMS 演變趨勢,並補足原始資料不足所造成的學習落差。進一
    步應用於結合 Weibull Distribution 與動態閾值之預測模型中,可預測失效點與剩餘壽命,
    提升預測系統的實用性與準確性。
    ;In the context of continuous advancements in industry and technology, Prognostics and
    Health Management (PHM) and Remaining Useful Life (RUL) prediction have become
    essential tools for enhancing operational efficiency and safety. Although traditional statistical
    methods and machine learning models have been widely applied to such tasks, they often
    struggle with high variability, nonlinear degradation, and imbalanced data, leading to limited
    prediction accuracy and weak generalization capabilities. In recent years, deep learning
    approaches have shown promising results, yet they typically rely on large amounts of complete
    degradation data and often lack interpretability and physical correspondence.
    To address these challenges, this study proposes an innovative data generation and
    prediction framework—WTTELSTM-GAN (Wavelet-Temporal-Transformer Enhanced LSTM
    GAN). The proposed model integrates wavelet transform for time-frequency feature extraction,
    bidirectional LSTM for temporal memory modeling, and multi-head attention for enhancing
    feature focus. This architecture effectively simulates the degradation trends of RMS sequences
    in mechanical systems and compensates for data insufficiency during model training.
    Furthermore, the generated data is incorporated into a prediction model that combines Weibull
    distribution fitting and dynamic thresholding, enabling accurate prediction of failure points and
    remaining useful life, thereby improving the practicality and reliability of the prognostic
    system.
    Appears in Collections:[Graduate Institute of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明