English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56131307      線上人數 : 543
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97316


    題名: 結合多來源文本與自注意力機制之多模態假評論偵測模型;A Multimodal Fake Review Detection Model Integrating with Multi- Source Textual Data and Self-Attention Mechanism
    作者: 余宥辰;Yu, You-Chen
    貢獻者: 工業管理研究所
    關鍵詞: 假評論偵測;多來源文本資料;多模態模型;自注意力機制;模型解釋性;Fake Review Detection;Multi-Source Textual Data;Multimodal Model;Self-Attention Mechanism;Model Interpretability
    日期: 2025-07-21
    上傳時間: 2025-10-17 11:07:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著電子商務與社群媒體的普及,越來越多消費者在購物時仰賴網路評論作為參考依據。在實際購買產品或服務前,許多人會先閱讀他人分享的經驗,以減少資訊落差與降低錯誤決策的風險。然而,虛假評論問題日益嚴重,不僅誤導消費者的判斷,也進一步破壞市場的公平性與平台的可信度。特別是在推薦系統與生成式人工智慧技術迅速進步的情況下,假評論的數量、傳播速度與擬真程度都有顯著提升,使得傳統的偵測方法越來越難以應對這些新型態的挑戰。過去的研究多聚焦於語言特徵的分析,對評論者的行為模式與模型的可解釋性則關注較少,導致其在實務應用上的彈性與拓展性受限。近年來,研究逐漸朝向整合多重特徵與深度學習技術的方向發展,然而,由於深度學習模型本身缺乏透明性,使得管理者與實務使用者在信任模型預測結果方面仍存疑慮,進而影響其在實務上的採用意願與可行性。
    基於此,本研究致力於整合來自不同平台的多來源文本與結構化資料,並結合自注意力機制,提出一個具備高泛化能力與解釋性的多模態假評論偵測模型,以更有效地因應目前多樣且複雜的虛假評論問題。本研究資料來源包括 Yelp、Amazon,以及使用 ChatGPT 所生成的虛假評論,以模擬生成式 AI 帶來的挑戰與風險。整體研究分為三個階段:第一階段針對文字特徵與各類機器學習模型進行測試,選出最佳基礎模型組合;第二階段則將評論者行為特徵與商品屬性等結構化資料納入,建構多模態模型,以強化其整體偵測效能與跨平台適應能力;第三階段進一步導入自注意力機制,強化模型對關鍵特徵的辨識與預測解釋能力,並驗證其在實務應用中所展現之潛在價值與貢獻。
    ;With the widespread adoption of e-commerce and social media, online reviews have
    become an important reference for consumer purchasing decisions. However, the emergence
    and growing severity of fake reviews not only mislead consumers but also undermine market
    fairness and platform trust. In particular, with the rapid development of recommendation
    systems and generative artificial intelligence, the volume, spread, and realism of fake reviews
    have greatly increased, making traditional detection methods increasingly inadequate. The
    literature indicates that early detection methods mainly focused on linguistic features, with
    limited attention to reviewer behavior and model interpretability. Recent studies have shifted
    towards multi-feature integration and deep learning. However, the lack of interpretability
    inherent in deep learning models poses challenges for managerial trust, thereby reducing their
    practical adoption in real-world settings. In response, this study aims to develop a multimodal
    fake review detection model with high generalizability and interpretability by integrating
    review data from various platforms and multiple data types and incorporating a self-attention
    mechanism. The data sources include Yelp, Amazon, and synthetic fake reviews generated by
    ChatGPT to balance the dataset. The experiment is structured in three phases: first, evaluating
    various machine learning algorithms using textual features to establish a performance
    benchmark; second, incorporating reviewer behavioral data and product-related attributes to
    construct a multimodal framework aimed at boosting detection accuracy and cross-domain
    generalization; and third, implementing a self-attention mechanism to strengthen the model’s
    focus on critical features and enhance interpretability.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML0檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明