English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59695793      線上人數 : 787
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97341


    題名: A new lower bound for flexible job shop scheduling problem with batching to minimize total tardiness and total number of tardy stage outs
    作者: 吳啟昀;Wu, Chi-Yun
    貢獻者: 工業管理研究所
    關鍵詞: 彈性零工式排程問題;分離弧線圖;批次生產;Flexible job-shop;scheduling problem;conjunctive graph
    日期: 2025-07-24
    上傳時間: 2025-10-17 11:09:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 在半導體製程中,我們在彈性零工式排程問題(Flexible job shop scheduling
    problem)環境下,考慮的限制條件有批次處理(Batching)和順序相依整備時間
    (Sequence-dependent setup time),目標為最小化總延遲時間(Total tardiness)和
    Total number of tardy stage-outs。這兩個目標的解可以通過分離圖(Conjunctive
    graph)來表示,其中每個工件(job)都具有多個層級(layer),每個層級包含多個操作
    (operation),且總延遲階段數的目標會以圖層(layer)的方式呈現。為解決這一雙目
    標問題,本研究採用了NSGA-II演算法作為基於帕累托(Pareto-based)的方法來尋找最
    佳解。鄰域結構(Neighborhood structure)將被應用於突變運算子(Mutation
    operator),並且包括兩種類型的移動(Move),以及引入偏好值(preference value)來
    幫助我們的搜索過程。這些移動的可行性保證(Feasibility guarantees)將確保在移
    動後不會產生循環(Cycle)。此外,我們將提出針對兩個目標值新的下界(New Lower
    bounds)將確保在進行移動後不會增加目標值,並將利用新的下界和節省值(saving
    values)改善階層式移動分類(Hierarchy of moves)結果且應用於增強解的多樣性與效
    果。;In the semiconductor manufacturing process, we consider the Flexible Job Shop
    Scheduling Problem (FJSP) environment with two specific constraints: batch processing and
    sequence-dependent setup times. The objective is to minimize both the total tardiness and the
    total number of tardy stage-outs. Solutions for these two objectives can be represented using a
    conjunctive graph, where each job has multiple layers, each layer consists of multiple
    operations, and the objective of minimizing the number of tardy stage-outs is visualized through
    layered graph structures.
    To address this bi-objective optimization problem, we adopt the NSGA-II algorithm, a
    Pareto-based evolutionary approach for identifying optimal solutions. A neighborhood structure
    is applied within the mutation operator, incorporating two types of moves along with a
    preference value to guide the search process. The feasibility of these moves is guaranteed to
    prevent the creation of cycles in the graph.
    Moreover, we introduce new lower bounds for both objective functions to ensure that
    moves do not worsen the objective values after being applied. These new bounds, along with
    associated saving values, are used to improve the hierarchy of move classifications, thereby
    enhancing both solution diversity and solution quality.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML20檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明