乙二醇在石墨烯上的潤濕行為透過分子動力學模擬進行研究,涵蓋三種構型:奈米液滴、奈米薄膜與奈米液橋。在液滴鋪展過程中,EG表現出完全潤濕的特性,表面附近呈現層狀結構,且內能隨時間持續下降。有別於傳統的鋪展行為,液滴在形成第二層覆蓋前驅膜後,其表觀接觸底面反而出現收縮現象。奈米薄膜的分析顯示EG與石墨烯間存在強烈作用力,表現在前兩層具有高密度、薄膜厚度增加時內能上升,以及顯著負值的分離壓力。在奈米液橋系統中,隨著通道寬度增大,系統經歷從去潤濕轉變為潤濕的過程,包括由雙層轉為三層結構、前驅膜的形成以及最終的破裂;然而,若石墨烯表面具有有限尺寸,則會抑制乙二醇的鋪展,進而阻礙此一潤濕轉變的發生。;The wetting behavior of ethylene glycol (EG) on graphene is investigated using molecular dynamics (MD) simulations across three configurations: nanodroplet, nanofilm, and nanoplug. During droplet spreading, EG exhibits total wetting, characterized by layered structuring near the graphene surface and a continuous decrease in internal energy. Unlike classical spreading, the apparent base area of the droplet contracts following the formation of a second EG layer atop the precursor film. Analysis of the nanofilm reveals strong EG–graphene interactions, as evidenced by the high density in the first two layers, an increase in internal energy with film thickness, and a significantly negative disjoining pressure. In nanoplug systems, a dewetting-to-wetting transition occurs as the channel width increases, progressing from bilayer to trilayer formation, precursor film development, and eventual rupture—unless constrained by finite graphene surfaces, which inhibit EG spreading and suppress the transition.