English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60277770      線上人數 : 881
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97348


    題名: An extension of NSGA-II approach for flexible job shop scheduling with batching and material assignment when minimizing makespan and total weighted material-wasted
    作者: 陳逸軒;Chen, Yi-Hsuan
    貢獻者: 工業管理研究所
    關鍵詞: 彈性零工式排程;非支配排序遺傳驗算法-II;雙目標優化;連結圖;材料分派;機率性物料選擇機制;Flexible job shop scheduling;NSGA-II;bi-objective optimization;conjunctive graph;material assignment;material selection mechanism with probability
    日期: 2025-08-14
    上傳時間: 2025-10-17 11:10:17 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在解決半導體製造中的排程問題,特別是涉及操作分配和材料分配的雙目標優化問題。目標是最小化完工時間(Makespan)與總加權材料浪費(Total Weighted Material Wasted; TWMW),考慮了決定哪些的材料組合要被裝載在機器上的材料分派(Material assignment)及平行批次處理(Parallel batching)的子問題,因此引入了一種結合材料分配多樣性與操作權重的解決方案,期望能找到符合需求之優化排程。在我們的排程問題中,機台可行性(Machine eligibility)並不是預先給定好的,會隨著面對不同的作業的配方(Recipe),材料需求組合會有所變化,我們使用能夠表示批次處理的連結圖(Conjunctive graph)來表示操作順序,並引入材料分配機制來計算每種材料在不同機台間的分配機率。在初步解的構建過程中,結合了操作權重和材料分配策略,並通過遺傳算法(Genetic Algorithms; GA)進行優化,並在材料交叉操作中通過加權機制解決材料選擇的問題和基於材料使用機率的移除策略,期望進一步優化了材料分配的過程,再由非支配排序基因演算法(Non-dominated Sorting Genetic Algorithm II; NSGA-II),去求得雙目標的柏拉圖前緣(Pareto front),在每一次的迭代中找到適合留下來的子代,在有限的時間內求得優化解。;This study aims to address scheduling problems in semiconductor manufacturing, particularly focusing on the bi-objective optimization involving operation assignment and material assignment. The objectives are to minimize makespan and Total Weighted Material Wasted (TWMW). Sub-problems include determining the combinations of materials to be loaded onto machines (Material assignment) and managing Parallel Batching. To this end, a solution combining material allocation diversity and operation weighting is proposed, aiming to achieve optimized scheduling that meets specific requirements.
    In the context of our scheduling problem, machine eligibility is not predetermined; it dynamically changes with the recipes of different operations, leading to variations in material demand combinations. We employ a Conjunctive Graph capable of representing batch processing to depict operation sequences and introduce a material allocation mechanism to calculate the probabilities of assigning each material to different machines.
    During the construction of initial solutions, we integrate operation weighting and material allocation strategies, optimizing them through Genetic Algorithms (GA). In the material crossover operation, a weighted mechanism is used to resolve material selection issues, complemented by a removal strategy based on material usage probability, to further optimize the material allocation process. Subsequently, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to obtain the Pareto front of the bi-objective problem, identifying suitable offspring at each iteration and achieving optimized solutions within a limited timeframe.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML37檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明