中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97401
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 60037110      在线人数 : 930
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97401


    题名: 噻吩吡嗪 (TP) 含氟衍生物之電洞傳輸層與界面修飾層材料開發
    作者: 莊凱全;Zhuang, Kai-Quan
    贡献者: 化學學系
    关键词: 鈣鈦礦;太陽能;電洞傳輸層;界面修飾層;噻吩吡嗪
    日期: 2025-06-30
    上传时间: 2025-10-17 11:15:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究主要以噻吩吡嗪 (thienopyrazine, TP) 作為核心,進行其
    含氟衍生物之合成,, 並致力於將其應用在鈣鈦礦太陽能電池,作為電
    洞傳輸層或界面修飾層,後者包含電子界面修飾材料 (electron
    transporting interfacial material, ETIM) 及電洞界面修飾材料 (hole
    transporting interfacial material, HTIM)。
    第一系列材料將五氟苯基 (pentafluorophenyl, FP) 接在 TP 四
    端,,並與具苯基 (phenyl, Ph) 之材料相互比較,。 共開發出四種分子,:
    DFP-TPF (1; 四端皆接上 FP), DP-TPF (2; 核心兩端接 Ph, 下方接
    FP) DFP-TP (3; 核心兩端接 FP, 下方接 Ph) 以及 DP-TP (4; 四
    端皆接上 Ph)。本系列材料 (1~3) 皆已獲得單晶結構之解析。本系
    列材料均作為界面修飾層應用於鉛鈣鈦礦太陽能電池中,,其中 DFP
    TPF (1) 作為 ETIM 可獲得 21.19% 之光電轉換效率 (PCE)。而
    DP-TPF (2) 及 DFP-TP (3) 作為 HTIM 分別可得到 21.87% 及
    21.61% 之 PCE,元件效能仍在優化中。
    第二系列則是於 TP 一端接上氟代三苯胺 (fluorinated
    triphenamine, TPAF),, 氟原子具高電負度,除可調整分子能階 增進
    電荷傳輸能力,亦可與鈣鈦礦層中未配位金屬離子形成鍵結進而鈍化
    缺陷。再於另一端接上錨定基團:丙二腈 (malononitrile, MN), 乙
    酸 烯基 (cyanoacetic acid, CA) 乙磷酸二 酯 烯基 (diethyl
    cyanomethylphosphonate, PE) 以 及 乙 磷 酸
    烯 基
    ((cyanomethyl)phosphonic acid, PA),合成出 TPAF-TP-MN (5)
    TPAF-TP-CA (6) TPAF-TP-PE (7) 及 TPAF-TP-PA (8) 四種自組裝
    材料,。本系列材料均作為電洞傳輸層材料應用於錫鉛鈣鈦礦太陽能電
    池中,其中 TPAF-TP-PE (7) 效能最高可達 20.7%,, TPAF-TP-MN (5)
    及 TPAF-TP-CA (6) 效能亦可高達 20.4%,元件效能仍在優化中。
    上述兩種系列之全新材料,皆已利用 NMR 與質譜完成其結構鑑
    定,, 接著透過 UV-vis 與 DPV 鑑定光學及電化學性質,再利用其結
    果計算出 HOMO LUMO 以及 Eg 等數據;最後以 TGA 及 DSC
    檢驗材料熱穩定性。;New fluorinated thienopyrazine (TP) derivatives were
    developed and applied as hole transporting materials (HTMs) or
    interfacial materials (IMs) in perovskite solar cells (PSCs). The latter
    includes hole transporting interfacial materials (HTIMs) and electron
    transporting interfacial materials (ETIMs).
    In the first series, TP core was end-capped with
    pentafluorophenyl groups (FP) or phenyl groups (Ph) to give four
    IMs: DFP-TPF (1), with FP groups at four ends; DP-TPF (2), with Ph
    at the top ends and FP at the bottom ends; DFP-TP (3), with FP at
    the top ends and Ph at the bottom ends; DP-TP (4), with Ph groups
    at four ends. Single-crystal structures were obtained and analyzed
    for compounds 1, 2, and 3. These compounds were employed as
    IMs in Pb-PSCs. Preliminary device tests of DFP-TPF (1), used as
    an ETIM, achieved a power conversion efficiency (PCE) of 21.19%.
    DP-TPF (2) and DFP-TP (3), used as HTIM, achieved PCEs of
    21.87% and 21.61%, respectively. Currently, DP-TP (4) is
    undergoing device testing.
    Fluorine atoms are capable of lowering the HOMO energy level
    to better match the perovskite (PSK) layer, due to their high
    electronegativity. In addition, fluorine may passivate defects by
    coordinating with the under-coordinated metal ions in the perovskite
    layer. Therefore, in the second series, a fluorinated triphenylamine
    (TPAF) group was first introduced on one end of the TP core. Then
    the other end of TP was end-capped with four different anchoring
    groups, including malononitrile (MN), cyanoacetic acid (CA), diethyl
    cyanomethylphosphonate (PE), and (cyanomethyl)phosphonic acid
    (PA) to give four self-assembled monolayer compounds (SAMs):
    TPAF-TP-MN (5), TPAF-TP-CA (6), TPAF-TP-PE (7), and TPAF-TP
    PA (8). These four SAMs were applied as HTMs in Sn-Pb-PSCs.
    Notably, TPAF-TP-PE (7) achieved the highest efficiency of 20.7%,
    while TPAF-TP-MN (5) and TPAF-TP-CA (6) reached 20.4% PCE.
    Currently, TPAF-TP-PA (8) is undergoing device testing.
    All newly developed materials from both series were structurally
    confirmed by NMR and mass spectrometry. Their optical and
    electrochemical properties were characterized using ultraviolet
    visible (UV-Vis) absorption and differential pulse voltammetry (DPV),
    from which the HOMO, LUMO, and optical bandgap (Eg) values
    were calculated. Thermal stability was evaluated using
    thermogravimetric analysis (TGA) and differential scanning
    calorimetry (DSC).
    显示于类别:[化學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML11检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明