English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56183289      線上人數 : 1233
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97437


    題名: 結合中尺度氣象模式與微尺度計算流體動力學模型評估綠島屋頂型風力發電機之發電潛能;Evaluating Energy Potential of Roof-Mounted Wind Turbines by Linking Weather and Computational Fluid Dynamics Models: A Case Study in Lyudao
    作者: 向昭遠;Hsiang, Chao-Yuan
    貢獻者: 土木工程學系
    關鍵詞: 中小型風機;城市風場;城市風能評估;計算流體動力學;small wind turbine;urban wind field;urban wind energy assessment;computational fluid dynamics
    日期: 2025-08-27
    上傳時間: 2025-10-17 11:18:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著全球對永續能源需求日益增加,風力發電已成為降低傳統能源對環境衝擊的
    重要解方。目前風力發展以大型風力機組為主,通常設置於風況穩定且空曠的地區,
    如平原與大陸棚,以確保穩定的發電效率。然而,大型風機建置與維護成本高昂,且
    易受地形、土地利用及風場條件限制,不利於廣泛佈設。相較之下,小型風力發電機
    具有建置成本低、佔地面積小、安裝與維護便利等優勢,特別適合應用於都市及建成
    環境中。然而,都市風場特性複雜,常見風速降低、風向不穩與湍流增加等現象,將
    顯著影響風機的發電效能。
    本研究旨在探討建築環境中風場特性對小型風力發電機發電潛力之影響,並建立
    一套適用於微尺度風場分析之風機選址評估方法。傳統氣象模式雖廣泛用於中尺度風
    場模擬,但因空間解析度不足且目標不同,難以準確描述建築物周圍的微尺度風場變
    化。為克服此一限制,本研究採用計算流體力學(Computational Fluid Dynamics, CFD)
    模擬建築區域之微尺度風場,並以氣象模式所提供的中尺度風場資料作為CFD模擬之
    邊界條件。此一整合方法可在缺乏現地監測資料的情況下,有效縮短資料蒐集時間並
    降低佈設成本。
    本研究選定位於台灣東南方海域的綠島作為研究場域。綠島電力主要由單一火力
    發電廠供應,夏季受高溫與觀光人潮雙重影響,面臨季節性電力負載不穩及供電風險。
    由於地形起伏大且平地有限,綠島並不適合建置大型風機,但受惠於豐沛的海風資源,
    具發展小型風力發電之潛力。研究最終以 Unity 引擎建構互動式三維視覺平台,整合
    模擬結果呈現建築物周圍風場特性,輔助選定最適風機設置位置並預估年發電潛力,
    提供離島地區再生能源規劃之參考依據。;With the increasing global demand for sustainable energy, wind power has
    become a critical solution to mitigating the environmental impacts of
    conventional energy sources. Present-day wind energy development
    predominantly focuses on large-scale turbines, which are typically installed in
    expansive and wind-rich areas such as plains and continental shelves to ensure
    stable electricity output. However, the deployment of large turbines is often
    constrained by high construction and maintenance costs, as well as limitations
    related to terrain, land use, and site-specific wind conditions. In contrast, small
    wind turbines offer distinct advantages, including lower installation costs,
    reduced spatial requirements, and greater ease of maintenance. These
    characteristics make them particularly suitable for urban and built environments.
    Nevertheless, urban settings frequently exhibit complex airflow conditions,
    characterized by reduced wind speeds, unstable directions, and increased
    turbulence, and result in diminished energy conversion efficiency.
    This research aims to examine the effects of wind field characteristics
    within architectural environments on the performance of small wind turbines
    and to establish a site selection methodology tailored for microscale wind field
    evaluation. While traditional mesoscale meteorological models are commonly
    employed for wind resource assessment, their limited spatial resolution and
    differing modeling objectives make them insufficient for accurately capturing
    microscale wind variations around buildings. To address this gap, this study
    utilizes Computational Fluid Dynamics (CFD) to simulate microscale wind flow
    patterns, incorporating mesoscale meteorological data as boundary conditions.
    This integrated approach helps reduce reliance on extensive in-situ measurements, thereby lowering data acquisition time and costs.
    The study site is Lyudao, also known as Green Island, located off the
    southeastern coast of Taiwan, where electricity is solely supplied by a single
    thermal power plant. During summer, the island experiences increased energy
    demand due to rising temperatures and tourism-related load surges, resulting in
    seasonal power supply challenges. Owing to its rugged terrain and limited flat
    areas, Lyudao is unsuitable for large wind turbine deployment; however, its
    abundant coastal wind resources make it a promising candidate for small wind
    turbine applications. To support decision-making, an interactive 3D
    visualization platform is developed using the Unity engine. This platform
    integrates simulation results to illustrate wind field characteristics around
    buildings, identify optimal turbine installation sites, and estimate annual power
    generation potential. The outcomes of this study provide a reference framework
    for the planning and implementation of renewable energy systems on offshore
    islands.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明