隨著太陽能產業規模持續擴張,報廢光伏模組數量預計將於未來數十年快速攀升,若未妥善處理,恐造成資源浪費與環境負擔。太陽能模組中所含高純度矽材料不僅具備高回收價值,更因其理論比容量高達 4200 mAh/g,而成為次世代鋰離子電池(LIB)負極材料的潛力來源。然而,矽於充放電過程中伴隨劇烈體積膨脹與低初始庫倫效率(ICE)問題,限制其實際應用潛力。為此,本研究提出一再利用策略,結合回收太陽能模組所得之矽粉與羧甲基纖維素(Carboxymethyl Cellulose, CMC)碳源,經高溫碳化製備出具孔洞結構之 Si/SiOx/C 複合材料,進一步引入鋰源進行原位預鋰化改質,形成 Si/SiOx/C-Li 複合負極材料,應用於鋰離子電池中。 實驗中採用濕式球磨法處理回收矽粉,搭配 CMC-Na 與改質後之 CMC-Li 作為碳源,在氮氣環境中進行 900 °C 高溫碳化熱處理,成功製備出矽嵌入多孔碳層的複合結構。電化學性能測試顯示,導入鋰源後之Si/SiOx/C-Li 複合材料具備 570.2 mAh/g 的放電容量(100 圈、200 mA/g)、容量保持率為84.6%,初始庫倫效率提升至88.2%。此外,採用水/乙醇混合溶劑於混合製程中進行粉體分散優化,可進一步提升材料微結構之均勻性,使其於前 20 圈循環中展現近 1000 mAh/g 的容量輸出。然而,混合溶劑系統雖有助於提升初期活性表現,長循環下容量仍有衰退趨勢,顯示仍需整合溶劑選擇與鋰源反應活性之協同優化,以兼顧材料微結構均勻性與界面穩定性。 整體而言,本研究不僅建立一簡易且具環保潛力之回收矽再製路徑,亦驗證碳複合與鋰源導入策略在改善矽基材料電化學行為方面的可行性,未來可應用於高能量密度儲能設備與永續電池材料開發,具備良好之實務應用前景與推廣價值。;The expansion of the solar sector will lead to increasing quantities of end-of-life PV modules in the coming years. High-purity silicon (Si), a major component of PV panels, holds significant recycling potential and is regarded as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity (4200 mAh/g). However, severe volume changes and low initial coulombic efficiency (ICE) during cycling hinder its practical use. To address these challenges, this study proposes a sustainable route to convert waste solar-derived Si into high-performance Si/SiOx/C-Li composite anodes. Recovered Si powders were wet-ball-milled and composited with carboxymethyl cellulose (CMC) as a carbon source. Subsequent thermal treatment at 900 °C under nitrogen yielded Si/SiOx/C composites with porous structures. Lithium-modified CMC (CMC-Li) was further introduced to achieve in-situ prelithiation. The resulting Si/SiOx/C-Li composite delivered a discharge capacity of 570.2 mAh/g after 100 cycles at 200 mA/g, with 84.6% capacity retention and an ICE of 88.2%. Additionally, the use of a water/ethanol co-solvent improved slurry dispersion and enhanced initial cycling performance (~1000 mAh/g). While early-stage capacity was improved, the gradual fading during long-term cycling indicates the need for coordinated optimization of microstructure and lithium incorporation. This study presents a cost-effective, eco-friendly strategy for converting waste Si into high-performance LIB anodes, with promising implications for sustainable energy storage.