中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97446
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 60229428      在线人数 : 871
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97446


    题名: 採用抗污、可接枝及離子選擇性二嵌段共聚物改質奈米多孔鋁薄膜的滲透發電系統;Osmotic Power Generation System using Antifouling, Graftable and Ion-Selective Diblock Copolymer Modified Nanoporous Aluminum Membrane
    作者: 廖涵湄;Liao, Han-Mei
    贡献者: 化學工程與材料工程學系
    关键词: 奈米流體膜;高選擇性;快速離子傳輸;滲透能量轉換;可逆加成-斷裂鏈轉移;二嵌段共聚物;離子選擇性膜;Al2O3奈米通道膜;Nanofluidic membranes;High selectivity;Fast ion transport;Osmotic energy conversion;RAFT polymerization;Diblock copolymer;Ion-selective membranes;Al2O3 nanochannel membranes
    日期: 2025-07-21
    上传时间: 2025-10-17 11:19:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 具有高選擇性和快速離子傳輸特性的奈米流體膜的設計對於實現高效的滲透能轉換至關重要。然而,奈米多孔離子選擇性薄膜上的非特異性吸附會在現實環境中的實際應用和永續實施中引發嚴重的問題,例如離子通量阻塞和離子選擇能力的改變。在這項工作中,我們提出了防止生物污染的塗層材料,並賦予奈米多孔鋁膜額外的離子選擇性。採用可逆加成-斷裂鏈轉移 (RAFT) 聚合合成了聚(2-甲基丙烯酰氧乙基磷酰膽鹼-b-聚(甲基丙烯酰氧乙基磷酸))(PMPC-b-PMEP)二嵌段共聚物,用於改質 Al2O3 奈米通道膜。接枝至 Al2O3 奈米通道膜上並控制離子傳輸。
    在本研究中,我們使用核磁共振(NMR)光譜來確認共聚物的化學結構和組成,並使用凝膠滲透色譜法(GPC)來分析它們的分子量和多分散指數(PDI)。採用各種儀器來表徵改質薄膜,包括水接觸角(WCA)測量以評估膜表面親水性和疏水性的變化,傅立葉變換紅外光譜(FTIR)和X射線光電子能譜(XPS)以確認膜表面元素結構和化學狀態的改變。採用酵素結合免疫吸附試驗(ELISA)對改質樣本進行蛋白質黏附測試,以評估膜的防污性能。此外,還進行了細菌黏附測試以評估塗層的抗生物污染能力。為了評估滲透能性能,我們使用微電流儀(Picoammeter)和電源供應器測量不同濃度梯度下奈米多孔薄膜的功率密度。結果表明,改質膜在人工海水和河水濃度梯度下實現了7.79 W/m2的功率密度,明顯優於未改質的薄膜,同時表現出優異的抗污性能。該研究透過抗污染嵌段共聚物改質薄膜,成功提高了滲透能轉換效率,且有效提高了其抗生物污染性能,為永續、綠色能源轉換技術鋪平了道路。;The design of nanofluidic membranes with high selectivity and fast ion transport properties is essential for achieving efficient osmotic energy conversion. However, nonspecific adsorption on nanoporous ion-selective membranes causes a serious problems, such as blockage of the ion flux and alternation of ion-selective capability, in their practical and sustainable implementation in the real-world environment. In this work, we present coating materials to prevent biofouling and endow additional ion-selectivity for nanoporous aluminum membranes. Diblock copolymers of Poly(2-methacryloyloxyethyl phosphorylcholine-b-poly(methacryloyloxyethyl phosphate) (PMPC-b-PMEP) were synthesized using reversible addition−fragmentation chain-transfer (RAFT) polymerization for modification of Al2O3 nanochannel membranes. The molecular weight and compositions of the copolymers were carefully designed and optimized to meet demanded request as a multi-functional coating. Zwitterionic MPC was applied to resist nonspecific adsorption from a complex medium, and anionic MEP monomer was used for surface grafting onto Al2O3 nanochannel membranes and controlling ion transport.
    In this study, we used nuclear magnetic resonance (NMR) spectroscopy to confirm the chemical structures and compositions of the copolymers, and gel permeation chromatography (GPC) to analyze their molecular weight and polydispersity index (PDI). Various instruments were employed to characterize the modified membranes, including water contact angle (WCA) measurements to assess changes in hydrophilicity and hydrophobicity on the membrane surface, Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to confirm alterations in the membrane′s surface elemental structure and chemical states. Protein adhesion tests for the modified samples were conducted using an enzyme-linked immunosorbent assay (ELISA) to evaluate the membrane′s anti-fouling performance. Additionally, bacterial adhesion tests were performed to assess the coatings′ resistance to biofouling. To assess the osmotic energy performance, we used a picoammeter and power supply to measure the power density of nanoporous membranes across different concentration gradients. The results showed that the modified membrane achieved a power density of 7.79 W/m2 under artificial seawater and river water concentration gradients, significantly outperforming the unmodified membrane, while demonstrating excellent anti-fouling properties. This study successfully enhanced the osmotic energy conversion efficiency of the membrane through anti-fouling block copolymer modification and effectively improved its anti-biofouling performance, paving the way for sustainable and green energy conversion technologies.
    显示于类别:[化學工程與材料工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML25检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明