English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60114450      線上人數 : 948
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97448


    題名: Generalizable Fragment-Based Graph Learning Framework to Accelerate Predictive Design of High-Efficiency Organic Photovoltaics
    作者: 章傳庸;Chang, Chuan-Yung
    貢獻者: 化學學系
    關鍵詞: 有機太陽能電池;機器學習;圖神經網路
    日期: 2025-07-28
    上傳時間: 2025-10-17 11:19:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 高效率有機太陽能電池(OPVs)的開發面臨重大挑戰,主要源於供體:受
    體:第三元件(D:A:T)材料組合所構成的龐大組合空間。本研究提出一套具備通用性與可擴展性的片段式圖神經深度學習框架,用以加速非富勒烯(NF)三元OPV材料的預測設計與發現。我們將分子表示為由具化學意義的功能性片段(FF)組成的圖結構,並結合來自密度泛函理論(DFT)與分子力學所計算之電子與結構性片段描述子,訓練一個導向訊息傳遞神經網路(D-MPNN)模型以精準預測光電轉換效率(PCE)。為了提升高效能系統的預測準確度,我們引入加權訓練策略,對 PCE > 16% 的樣本賦予更高權重,使模型在高效率區間的預測表現顯著改善。加權後的 D-MPNN 模型於交叉驗證中達到優異表現(r = 0.93、MAE = 0.89%、RMSE = 1.12%),並能有效泛化至時間上獨立的測試資料集。我們進一步應用該模型篩選超過 3.34 億種 D:A:T 組合,成功辨識出 153 組預測 PCE 超過 20% 的高效率系統。透過 Z-score 增富分析,我們辨識出對高效能表現有顯著貢獻的關鍵分子片段,為未來 OPV 材料設計提供資料驅動的指引。本片段式框架提供了一條穩健、高效且具可擴展性的高通量虛擬篩選管線,能有效支援有機太陽能材料的加速發現。;The development of high-efficiency organic photovoltaics (OPVs) remains a significant challenge due to the vast combinatorial space of donor: acceptor: ternary (D: A: T) material systems. In this work, we present a generalizable and scalable fragmentbased graph deep learning framework to accelerate the predictive design and discovery of non-fullerene (NF) ternary OPV materials. By representing molecules as graphs composed of chemically meaningful functional fragments (FFs), and encoding fragment-level electronic and structural descriptors derived from density functional theory (DFT) and molecular mechanics, we train a directed message passing neural network (D-MPNN) to accurately predict power conversion efficiency (PCE). To enhance prioritization of high-performance systems, we implemented a weighted training scheme that assigns greater importance to samples with PCE > 16%, improving predictive accuracy in the high-efficiency regime. The weighted D-MPNN achieves excellent performance (r = 0.93, MAE = 0.89%, RMSE = 1.12%) in cross-validation and generalizes effectively on a temporally separated independent test set. We apply the model to screen over 334 million D:A:T combinations, identifying 153 systems with predicted PCEs exceeding 20%. Enrichment analysis using Z-scores reveals key molecular fragments contributing to high performance, offering data-driven insights for future OPV design. This fragment-based approach provides a robust, efficient, and extensible pipeline for high-throughput virtual screening in OPV research.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML16檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明