English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56332552      線上人數 : 2244
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97463


    題名: UNet、ResUNet、RegUNet 與 TransUNet 深度 學習模型在血管壁影像分割上的比較;Comparison of UNet, ResUNet, RegUNet and TransUNet deep learning models for vessel wall image segmentation
    作者: 王冠富;Wang, Guan-Fu
    貢獻者: 生物醫學工程研究所
    關鍵詞: 深度學習模型;UNet;ResUNet;RegUNet;TransUNet;deep learning model
    日期: 2025-07-30
    上傳時間: 2025-10-17 11:22:25 (UTC+8)
    出版者: 國立中央大學
    摘要: 顱內動脈粥樣硬化為一種慢性進行性的血管退化疾病,其主要病理變化包括動
    脈壁的結構性退化與膽固醇斑塊的沉積。疾病早期常見血管壁增厚,隨病程進
    展可能造成血管腔狹窄,進而引發缺血性腦中風或腦部灌流不足等臨床後果。
    若能透過 black-blood MRI 於早期即偵測出顱內動脈的病理變化,將有助於疾
    病的早期診斷、風險評估與後續治療規劃。然而,由於顱內血管壁相較於周邊
    血管更為細薄,影像辨識難度較高,因此提高偵測準確性仍是一項挑戰。本研
    究旨在探討運用深度學習模型,對高解析度黑血 MRI 中血管與血管壁進行自動
    化標記與預測的可行性。研究資料來自 21 位患者的黑血磁振影像,每位患者皆
    包含 155 張切片(切片厚度為 1 mm,畫素解析度介於 0.22 至 0.5 mm)。影像
    前處理階段,首先由人工標記基底動脈的中心線,進一步建立中軸線模型,並
    於每 0.5 mm 處擷取垂直於中軸線的橫向切片(平均每位患者約 51.6 ± 19.09
    張),再重新採樣為 0.1 mm 畫素解析度。接著由人工標記血管外壁,並透過線
    性模型自動推估內壁位置。最終共計 1259 張橫切圖像,其中 839 張(66%)用
    於訓練四種深度學習模型:UNet、ResUNet、RegUNet 與 TransUNet;234 張
    (19%)用於驗證,186 張(15%)用於測試。模型預測結果以 IoU
    (Intersection over Union)作為主要效能評估指標,進行模型表現分析與比
    較。整體 IoU 表現為 TransUNet 的 0.8657 ± 0.0294 最好。;Intracranial atherosclerosis is a chronic, progressive vascular degenerative disease,
    characterized primarily by structural degradation of the arterial wall and cholesterol
    plaque deposition. In its early stages, vessel wall thickening is commonly observed.
    As the disease progresses, it can lead to arterial lumen narrowing, potentially resulting
    in ischemic stroke or cerebral hypoperfusion. Early detection of pathological changes
    in intracranial arteries using black-blood magnetic resonance imaging (MRI) can
    facilitate timely diagnosis, risk assessment, and treatment planning. However, due to
    the thinner walls of intracranial vessels compared to peripheral arteries, accurate
    image identification remains a major challenge. This study aims to investigate the
    feasibility of applying deep learning models to automatically segment and predict
    vessel walls and lumens in high-resolution black-blood MRI. The dataset consists of
    black-blood MR images from 21 patients, each comprising 155 slices (slice thickness
    of 1 mm, pixel resolution ranging from 0.22 to 0.5 mm).In the preprocessing stage,
    the basilar artery centerline was manually annotated and used to construct a central
    axis model. Cross-sectional slices perpendicular to the axis were extracted at 0.5 mm
    intervals (on average, 51.6 ± 19.09 std slices per MRI dataset) and resampled to a
    pixel resolution of 0.1 mm. The outer vessel wall was manually labeled, and the inner
    wall boundary was estimated using a linear model. A total of 1,259 cross-sectional 2D
    images were obtained, with 839 images (66%) used to train four deep learning
    models: UNet, ResUNet, RegUNet, and TransUNet; 234 images (19%) were used for
    validation, and 186 images (15%) for testing. Model performance was evaluated using
    the Intersection over Union (IoU) as the primary metric. Among the models,
    TransUNet achieved the highest mean IoU score (0.8657 ± 0.0294).
    顯示於類別:[生物醫學工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明