English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56332553      線上人數 : 2245
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97510


    題名: 集成式機器學習應用於危害氣體暴露下生理變化與健康風險預測模型之研發;Development of an Ensemble Machine Learning Model for Predicting Physiological Changes and Health Risks under Hazardous Gas Exposure
    作者: 范揚;Fan, Yang
    貢獻者: 生醫科學與工程學系
    關鍵詞: 危害氣體;生理訊號預測;集成式機器學習;迴歸模型;Hazardous gas;physiological signal prediction;Ensemble machine learning;Regression models
    日期: 2025-07-22
    上傳時間: 2025-10-17 11:27:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著工業化與都市化的快速發展,環境中暴露於多種氣體(如硫化氫、一氧化碳、
    二氧化碳、氧氣與氨氣等)的風險日益增加,對人體健康構成潛在威脅。危害氣體的吸
    入可能對人體呼吸系統與心血管系統造成急性或慢性影響,導致生命體徵出現異常,甚
    而危及生命安全。為此,本研究旨在建構一套可即時預測氣體暴露下之生理變化與健康
    風險的智慧模型系統,作為未來智慧醫療與工業安全預警的核心工具。
    本研究蒐集在多種氣體暴露條件下之生理感測資料,經過資料正規化、特徵工程與
    演算法優化處理後,分別建構線性回歸(LR)、支援向量機(SVM)、決策樹(DT)與多
    層感知器(MLP)等子模型,進行心率等關鍵生命體徵的迴歸預測。進一步透過二階段
    集成式機器學習架構整合各子模型優勢,提升整體預測表現。本研究初步使用實驗動物
    資料進行模型訓練與驗證,所建立之系統具有良好的泛化能力與轉譯潛力,其模型能夠
    擷取氣體濃度與暴露時間對生理變化的高度關聯性。實驗結果顯示,本模型在多種氣體
    環境下均能有效預測出生命體徵的變化趨勢,並具備即時預警與健康風險分級之能力。
    未來透過引入人類生理資料並對參數做適當轉換,本系統可望廣泛應用於臨床急重症管
    理、工業健康監控及智慧城市中的公共安全預防。;With the rapid advancement of industrialization and urban development, the risk of human
    exposure to various hazardous gases such as hydrogen sulfide, carbon monoxide, carbon
    dioxide, oxygen, and ammonia has significantly increased, posing potential threats to human
    health. Therefore, this study aims to develop an intelligent predictive model system that can
    monitor physiological changes in real-time and assess health risks associated with gas exposure.
    This system will be a core component for future healthcare and industrial safety warning
    platforms. Physiological sensing data collected under multiple gas exposure conditions were
    processed through normalization, feature engineering, and algorithm optimization. Four
    regression sub-models, Linear Regression (LR), Support Vector Machine (SVM), Decision
    Tree (DT), and Multi-Layer Perceptron (MLP), were constructed to predict key physiological
    indicators, such as heart rate. These models were further integrated into a two-stage ensemble
    machine learning architecture to enhance overall prediction performance. Although initial
    model training and validation were conducted using experimental animal data, the developed
    system demonstrated strong generalizability and potential for translating findings to human
    applications by capturing the correlations between gas concentration, exposure duration, and
    physiological variations.
    Experimental results indicate that the proposed model effectively identifies trends in
    physiological signals under various gas conditions and supports real-time warnings and health
    risk stratification. With future incorporation of human physiological data and dynamic
    parameter adaptation, the system is expected to be widely applicable to clinical emergency
    management, occupational health monitoring, and public safety prevention in smart city
    infrastructures.
    顯示於類別:[生物醫學工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明