中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97566
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56346879      線上人數 : 1709
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97566


    題名: 以銅錯鹽化學接枝法合成高效率逆水煤氣轉換銅鈰觸媒
    作者: 陳姿澍;Chen, Zi-Shu
    貢獻者: 化學學系
    關鍵詞: 催化劑;二氧化碳氫化反應;化學接枝法
    日期: 2025-08-21
    上傳時間: 2025-10-17 11:37:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 在全球暖化日益嚴重的情況下,利用逆水煤氣變換 (reverse water-gas shift, RWGS) 反應將溫室氣體CO2轉換成具有高經濟價值的化學品CO,不僅能實現碳循環利用,同時也能保兼顧經濟效益,具有重要的環境與產業意義。根據發表的文獻,活性金屬與金屬氧化物的界面是調控催化反應活性以及產物選擇性的關鍵因素之一,因此如何最大化有效的活性金屬與金屬氧化物界面,是提升催化活性最直接的途徑。鑒於Cu已被報導具有優異的CO選擇性,而CeO2則是富含氧空缺,有助於CO2的吸附和活化,因此Cu-CeO2複合催化劑常用來開發高效率的RWGS催化劑。
    有別於其它文獻中常見使用大量CeO2做為載體的催化劑,本研究使用化學接枝法在高表面積的SiO2載體表面上固定原子級分散的銅錯合物,隨後透過沉積沉澱法將氫氧化鈰沉積其上,在高溫空氣鍛燒後,成功合成出具有豐富Cu-CeO2有效作用界面的催化劑 (命名為 CeO2/CuO@SiO2)。此催化劑不僅擁有良好的 RWGS 反應催化活性和選擇性,同時也顯著地降低了氧化鈰所需的用量。
    為了更深入探討此創新催化劑的表面結構與反應機制,本研究也以初濕含浸法 (incipient wetness impregnation)、共沉澱法 (co-precipitation) 以及沉積沉澱法 (deposition-precipitation) 製備了具有不同表面Cu-CeO2結構的對照組催化劑來進行比較分析。透過一系列的催化劑結構性質鑑定 (包含XRD、TEM、XAS、XAP、H2-TPR 等),實驗結果證實了 CeO2/CuO@SiO2 催化劑上形成了豐富的Ce-Ce 相互作用界面,部分銅以固溶體形式摻雜進氧化鈰晶格中,同時也存在少量的小尺寸CuO團簇。此外,透過原位漫反射紅外光譜分析顯示,甲酸鹽路徑是CeO2/CuO@SiO2 催化劑上進行RWGS反應的主要機制。綜合來說,本研究不僅成功開發出一種低氧化鈰用量且高效的RWGS催化劑,並且研究結果表現出的銅-鈰界面協同效應,與特殊的結構調控策略,能夠為未來設計更高效、更具選擇性的CO2氫化反應催化劑提供良好的參考依據。
    ;The reverse water-gas (RWGS) reaction, which converts the greenhouse gas CO2 into the economically valuable chemical CO, offers a crucial pathway for carbon recycling and economic sustainability in the context of global warming. It’s widely reported that the interface between active metals and metal oxides plays a key role in modulating catalytic activity and product selectivity; thus, maximizing this effective interface is a direct route to enhancing catalytic performance. Given copper’s (Cu) reported excellent CO selectivity and ceria’s (CeO2) abundance of oxygen vacancies for CO2 adsorption and activation, Cu-CeO2 composite catalysts are commonly developed for high-efficiency RWGS.
    Distinct from conventional approaches employing large quantities of CeO2 as a support, this study innovatively synthesized a catalyst with abundant Cu-CeO2 active interfaces, named CeO2/CuO@SiO2. This was achieved by initially immobilizing atomically dispersed copper complexes onto a high-surface-area SiO2 support via a chemical grafting method, followed by the deposition of cerium hydroxide through a deposition-precipitation method, and subsequent high-temperature air calcination. This catalyst not only exhibited excellent catalytic activity and CO selectivity for the RWGS reaction but also significantly reduced the required CeO2 loading compared to typical CeO2-supported catalysts.
    To thoroughly investigate the surface structure and reaction mechanism of this novel catalyst, comparative analyses were conducted with control catalysts prepared by incipient wetness impregnation, co-precipitation, and deposition-precipitation methods, each featuring distinct surface Cu-CeO2 structures. A comprehensive suite of catalyst characterization techniques (including XRD, TEM, XAS, XPS, H2-TPR, etc.) confirmed the formation of abundant Cu- CeO2 interaction interfaces on the CeO2/CuO@SiO2 catalyst, where a portion of copper was doped into the ceria lattice in solid solution form, alongside the presence of small, highly dispersed CuO clusters. Furthermore, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the formate pathway is the predominant mechanism for the RWGS reaction over the CeO2/CuO@SiO2 catalyst. Collectively, this study not only successfully developed an efficient RWGS catalyst with low ceria consumption but, more importantly, its findings regarding copper-ceria interfacial synergy and precise structural control strategies provide a strong experimental foundation for designing more efficient and selective CO2 conversion catalysts in the future.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明