| 摘要: | 本研究基於水蒸發誘導摩擦奈米發電技術,提出一種結合陽極氧化鋁(Anodic Aluminum Oxide, AAO)奈米通道結構與金屬奈米粒子之高效能能量轉換元件。首先,透過兩步陽極氧化製程,成功製備出具有高孔隙率、高準直性且規則排列的多孔陽極氧化鋁奈米通道結構,顯著提升元件與水的接觸面積,進一步強化毛細水輸送與水分子的蒸發速率,從而增強發電輸出。在此基礎上,再進一步利用物理氣相沉積中的濺鍍技術,將金屬奈米粒子均勻披覆於通道內壁。該金屬奈米結構不僅具備優異的電荷收集功能,同時藉由表面電漿共振(Surface Plasmon Resonance, SPR)產生顯著的光熱效應,有效提升局部溫度,促進水分子蒸發,形成兼具光熱增強與電荷收集雙功能的高效電極結構,突破傳統電極設計因孔洞遮蔽所造成的蒸發受限與性能下降等瓶頸。 此外,針對陽極氧化鋁奈米通道結構製程中常見的底部阻障層導電性不足之問題,本研究開發一套兩階段梯度式降壓電化學處理製程,能有效去除阻障層,同時保留底部鋁基材作為高導電性的下電極,簡化結構並提升整體導電性能。再透過於鋁基材表面設計微孔結構,使元件具備自供水功能,能夠持續穩定地透過毛細作用輸送水分至奈米通道內部,實現長時間穩定蒸發與持續發電,顯著提升元件的可靠性與應用壽命。 本研究將透過系統性的材料結構表徵與電性能測試,充分驗證了所提出製程的可行性與元件的高穩定性。進一步探討不同電極材料選擇、操作環境溫度變化以及電解質濃度對發電性能的影響,提出一套具高度實用性與可擴展性的摩擦奈米發電裝置設計與開發策略。此成果不僅為未來自供能微型感測器、物聯網裝置及分散式環境能量收集系統提供堅實的技術支撐,也展現出摩擦奈米發電技術於實際應用中的巨大潛力 ;This study presents a high-performance energy conversion device based on water-evaporation-induced triboelectric nanogenerator (TENG) technology, integrating anodic aluminum oxide (AAO) nanochannel structures with metal nanoparticles. A highly ordered AAO nanochannel membrane with high porosity and vertical alignment was successfully fabricated via a two-step anodization process, significantly enhancing the water–solid contact area and promoting capillary-driven water transport and evaporation rates. Furthermore, metal nanoparticles were uniformly deposited onto the inner walls of the nanochannels using sputtering, enabling the formation of multifunctional electrodes with both efficient charge collection and photothermal enhancement derived from surface plasmon resonance (SPR). This design effectively overcomes the performance limitations associated with conventional electrode structures, which often block pore openings and reduce evaporation efficiency. To address the poor conductivity caused by the barrier layer in AAO structures, a two-stage gradient voltage electrochemical process was developed, which removes the barrier layer while retaining the aluminum substrate as a highly conductive bottom electrode. Additionally, a microporous structure was introduced on the substrate to enable continuous water supply through capillary action, ensuring long-term stable evaporation and sustained power generation. Comprehensive material characterization and electrical performance testing confirm the feasibility, reliability, and scalability of the proposed device. This research further explores the influence of electrode materials, ambient temperature, and electrolyte conditions on device performance, providing a practical design strategy for scalable triboelectric nanogenerators. The results offer promising prospects for self-powered microsensors, IoT devices, and distributed environmental energy harvesting system. |