中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97581
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56143603      線上人數 : 556
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97581


    題名: 之字形矽晶奈米線水蒸發發電元件之設計、製備及其性能分析;Design, Fabrication, and Performance Evaluation of Zigzag Si Nanowire Based Devices for Water Evaporation Power Generation
    作者: 李群傑;CHIEH, LEE-CHUN
    貢獻者: 化學工程與材料工程學系
    關鍵詞: 矽晶奈米線;水蒸發發電
    日期: 2025-08-25
    上傳時間: 2025-10-17 11:38:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究成功於N-type (111)之矽單晶基材上,利用兩步驟銀催化化學蝕刻法,製備出具有高深寬比的之字形矽晶奈米線結構,並透過DI水初步測試其水蒸發發電結果與釐清其產電原理。接著為了進一步增加其反應面積,本研究採用酸性橫向蝕刻法以製備出表面具有微奈米孔隙之多孔隙之字形矽晶奈米線結構,經實際量測後亦證實其可顯著提升元件之發電性能。接著,為了提升電荷的收集效率,本研究採用無電鍍方式形成銀奈米顆粒層,使其在具多孔隙結構的之字形貌矽晶奈米線頂端均勻沉積並交織成網絡結構。最終在常溫常壓環境下更進一步提升水蒸發發電元件之輸出電壓與電流表現。
    為了符合可撓曲穿戴式裝置需求,本研究成功以一步驟銀催化化學蝕刻法製備出具有超薄特性,且均勻的矽單晶基材,接著在正面結合前述所掌握之最佳結構形貌,成功製備出可撓曲特性的銀奈米顆粒/多孔隙之字形貌矽晶奈米線陣列結構,並且該結構在彎曲狀態下仍能維持穩定的發電性能。
    為達成不須外力補水即可持續產電之優勢,本研究於薄化基材背面應用一步驟銀催化化學蝕刻法成功製備出矽晶微米孔洞結構,並結合正面之最佳奈米結構製程,形成可撓曲特性的銀奈米顆粒/多孔隙之字形矽晶奈米線陣列/矽晶微米孔洞複合結構。此結構可藉由毛細現象使水源由下往上持續供應,有效實現長時間穩定發電,無須人工補水操作,進一步優化水蒸發發電元件之實用性。
    最後,本研究亦探討外部條件對元件性能之影響。實驗結果顯示,鹽水(模擬海水)中之陽離子有助於強化電雙層形成與流動電勢,提升輸出性能。此外,強制對流與光照亦可加速水蒸發,有助於提升元件整體效能,展現良好之環境適應性。最終,本研究進行串並聯水蒸發發電元件模組實驗,成功對多個電容充電並進行串聯後點驅動商購紅、黃、綠色LED燈,以及作為陽極氧化鋁微型電鍍系統之直流電源,實證本元件於實際應用上之潛力與可行性。;In this work, zigzag silicon nanowire (SiNWs) arrays with high aspect ratios were fabricated on N-type (111) silicon substrates using a two-step metal-assisted chemical etching (MACE) method. Their electricity generation from water evaporation was first examined in deionized water to clarify the underlying mechanism. To further enlarge the reaction area, an acidic lateral etching technique was employed to introduce micro–nano pores on the SiNWs surface, producing porous zigzag structures that significantly enhanced output performance.
    To improve charge collection, electroless deposition was adopted to form a silver nanoparticle (AgNPs) layer that uniformly coated the SiNWs tips and interconnected into a conductive network. This modification effectively increased both voltage and current of the device under ambient conditions.
    For flexible and wearable applications, the silicon substrate was uniformly thinned via one-step MACE. The optimized nanostructure was integrated on the front side, yielding a flexible AgNPs/porous zigzag SiNWs structure that maintained stable performance even under bending. To realize continuous water supply, backside micro-sized silicon pores were further fabricated by one-step MACE. When combined with the front nanostructure, a flexible AgNPs/porous zigzag SiNWs/silicon micropore heterostructure was obtained, enabling capillary-driven upward water transport and long-term stable power generation without manual refilling.
    Environmental tests showed that saline water enhanced electric double layer formation, while forced convection and light accelerated evaporation, boosting efficiency. Finally, device modules successfully powered LEDs, charged capacitors, and served as a DC source for micro-electroplating, demonstrating strong feasibility for practical hydrovoltaic energy harvesting.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明