Carbone 為一種碳(0)物種,具有兩對孤電子對,因其高電子密度,對主族金屬與過 渡金屬中心皆展現出優異的電子給予能力,也能有效穩定高度缺電子的高價態金屬陽離 子。本研究設計並合成一種新型的 Bis-carbodicarbene(Bis-CDC)鉗形配位基,並完成 其結構鑑定。該配位基可同時與主族金屬與過渡金屬形成錯合物,並展現出不同的配位 行為:與 Pd 所形成者為雙齒錯合物,而與 Al 與 Ga 所形成者則為雙齒與三齒錯合物。 其中,與 Al 與 Ga 所形成之錯合物為罕見的 CDC-Al-CDC 與 CDC-Ga-CDC 雙 陽離子錯合物。據我們所知,目前尚未有文獻報導以Bis-CDC 配位於 Al 、Ga與其雙 陽離子錯合物的實例。雙 CDC 配位基本身具備豐富的電子給予能力外,加上鉗形配位 設計提供了額外的構型剛性,強化了其穩定高價主族金屬的能力。此類錯合物拓展了 CDC 配位基在 Group 13 金屬錯合物領域的應用性,未來亦有機會合成出更高價態 Al 或Ga三陽離子之穩定與分離。 我們同時嘗試將Bis-CDC鹽配位基與過渡金屬 Pd 進行反應,而在反應中,該配位 基發生結構重排,形成錯合物 4ab 與 6ab。進一步以 X 光吸收光譜(XAS)分析顯示, CDC 配位基於 Pd 錯合物中展現出非惰性(non-innocent)的電子特性。本研究結果突 顯了 CDC 骨架在結構配位上的高彈性與電子豐富性,展現其於催化與材料科學領域的 潛在應用價值。;Carbone is a carbon(0) species bearing two lone pairs of electrons. Due to its high electron density, it exhibits excellent electron-donating ability toward both main group and transition metal centers, and can effectively stabilize electron-deficient high-valent metal cations. In this study, a novel bis-carbodicarbene (Bis-CDC) pincer ligand was designed and synthesized, and its structure was fully characterized. This ligand is capable of coordinating with both main group and transition metals, exhibiting different coordination behaviors: it forms a bidentate complex with Pd, while it forms both bidentate and tridentate complexes with Al and Ga. Notably, the complexes formed with Al and Ga represent rare examples of CDC–Al–CDC and CDC–Ga–CDC di-cations. To our knowledge, there are currently no reported examples in the literature of bis-CDC ligands coordinating to Al or Ga to form such di-cationic complexes. In addition to the inherently strong electron-donating ability of the bis-CDC ligand, the pincer type coordination design introduces additional conformational rigidity, further enhancing its capability to stabilize high-valent main group metals. These complexes expand the applicability of CDC ligands in the realm of Group 13 metal coordination chemistry and may pave the way for the synthesis and isolation of even higher-valent Al or Ga tri-cations in the future. We also investigated the reactivity of the bis-CDC salt ligand with the transition metal Pd. Upon reaction, the ligand undergoes a structural rearrangement, yielding complexes 4ab and 6ab. X-ray absorption spectroscopy (XAS) further revealed that the CDC ligand exhibits non innocent electronic behavior in the Pd complexes. These findings highlight the high structural flexibility and electron-rich nature of the CDC framework, demonstrating its potential utility in catalysis and materials science.