中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97616
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56140737      Online Users : 605
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97616


    Title: 研究純介金屬化合物於高溫高電流 環境下之電遷移行為探討;Study on The Electromigration Behavior of Pure Intermetallic Compounds under High Temperature and High Current Environment
    Authors: 趙睿霖;Chao, Jui-Lin
    Contributors: 化學工程與材料工程學系
    Keywords: 介金屬化合物;銅三錫;電遷移;熱遷移;二氧化矽
    Date: 2025-08-26
    Issue Date: 2025-10-17 11:41:23 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著電子產品朝向高效能、小型化、高功率密度等方向發展,構裝元件中銲點的可靠度已成為影響系統穩定性與壽命的關鍵因素。尤其在高溫與高電流密度條件下,電遷移現象所導致的原子擴散行為被視為最主要的失效機制之一。傳統上,大多數電遷移研究聚焦於多元合金或金屬基板與銲料的界面擴散行為,較少針對純金屬介化合物(IMCs)進行系統性探討。然而,隨著構裝尺寸持續微縮,IMC在銲點中所佔比例大幅提升,甚至在長期操作下整個銲點會轉化為IMC,因此深入了解純IMC的擴散與分相機制,對於未來構裝設計與失效預防至關重要。本研究以共濺鍍方式製備純Cu3Sn薄膜,透過調控Cu與Sn靶材功率比,控制其化學計量比為3:1,並進行退火處理提升薄膜結晶性。實驗中採用不同溫度與電流密度參數,對Cu3Sn薄膜進行電遷移與熱遷移測試,並結合SEM、TEM、STEM與EDS元素分析,觀察薄膜在不同條件下的微結構演變與相變化行為。研究結果顯示,Cu為主要的擴散原子,其在電流與溫度共同作用下會從Cu3Sn中向上遷移至表面,並與氧氣反應形成Cu基底的氧化物(如Cu2O、CuO),進而在表面生成凸起物與晶鬚等形貌特徵。此外,實驗也比較了有無SiO2絕緣擴散阻障層對擴散行為的影響,證實SiO2絕緣層可有效抑制氧氣進入與減緩分相現象。然而,當環境溫度提高至超過臨界點時,因材料間熱膨脹係數不匹配所產生的應力,會導致SiO2產生微裂縫,使氧氣滲入,導致氧化物與分相行為產生。本研究首次以純Cu3Sn薄膜為系統,完整分析了其於電子風力與溫度作用下的擴散與結構演變行為,提出相分離機制與擴散模型,並闡明高溫與氧氣對於Cu3Sn晶體結構穩定性的破壞行為,為高功率構裝技術中的材料可靠度提供關鍵科學依據。;The reliability of solder joints in packaging components has become a key factor influencing overall system stability and product lifetime. Electromigration under high temperature and high current density conditions is widely recognized as one of the most critical. Traditionally, most electromigration studies have focused on interfacial diffusion between solder alloys and substrate metals, while comparatively few have systematically investigated pure IMCs. However, as interconnect dimensions continue to shrink, IMCs occupy an increasingly large volume fraction in solder joints and eventually dominate the entire joint after prolonged operation. Therefore, understanding diffusion behavior and phase separation mechanisms in pure IMCs is crucial for future packaging design and reliability estimation. In this study, pure Cu3Sn thin films were fabricated by co-sputtering methods. Electromigration experiments were conducted under varying current densities and temperatures. Microstructural evolution and phase seperation in the films were characterized using SEM, TEM, STEM, and EDS. The results revealed that Cu is the dominant diffusing species. Cu atoms migrate upward to the film surface and react with ambient oxygen to form different feature Cu-based oxides extrusion. The role of a SiO2 insulating diffusion barrier was found that the presence of this layer significantly suppressed oxygen penetration and delayed phase separation. However, at elevated temperatures beyond a critical threshold, thermal expansion mismatch between materials induced microcracks in the SiO2 layer, allowing oxide and phase separation behavior generation. The study provides a comprehensive analysis of atomic migration and crystallinity transformation in Cu3Sn thin films under electrical and thermal stress and proposes a model describing phase separation behavior. The insights gained offer valuable guidance for material reliability in high-power electronic packaging.
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明