English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83956/83956 (100%)
造訪人次 : 62586245      線上人數 : 415
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97655


    題名: 玻璃基板之矽光子波導研究;Silicon Photonic Waveguide Structures on Glass Substrates
    作者: 張詣;Chang, Yi
    貢獻者: 光電科學與工程學系
    關鍵詞: 玻璃基板;波導;高品質因子共振腔;接觸式微影技術;共封裝光學;glass;waveguides;high-Q resonators;contact lithography;co-packaged optics (CPO)
    日期: 2025-07-17
    上傳時間: 2025-10-17 11:44:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著數位科技的迅速發展,現今社會對於高頻寬、低延遲與高效能的資訊傳輸需求日益增加。光通訊技術作為突破電子電路頻寬限制的關鍵解決方案,已被廣泛應用於長距離與高速資料傳輸系統中。矽光子技術(Silicon Photonics)憑藉其高度整合性與金氧半導體(CMOS)製程的相容性,可將光學元件整合於單一晶片上,實現低成本、低損耗與高效率的光電轉換平台。然而,矽光子技術在材料選擇與製程條件方面仍面臨限制,特別是在異質整合與封裝彈性方面。
    為克服上述挑戰,本研究選擇玻璃基板作為異質整合平台材料,充分利用其低折射率、高平坦度、尺寸穩定性與低介電損耗等特性,有效提升光學隔離與高頻傳輸能力。玻璃基板支援大面積製造技術,如扇出式面板封裝(FOPLP),不僅可降低成本,亦具高機械強度與抗翹曲性,適用於虛擬實境(VR)、增強實境(AR)及共封裝光學(CPO)等先進光子系統應用。
    本研究探討聚合物材料應用於光子元件之潛力,特別是在高品質波導製作方面,包含單層聚合物波導與結合氮化矽(Si₃N₄)或非晶矽(a-Si:H)之混合波導結構。透過紫外接觸式微影技術於玻璃基板上圖形化波導,實現低成本、低損耗之製程流程。提升導光能力並縮小彎曲半徑,本研究引入低粗糙度(<2 nm)的氮化矽薄膜與高折射率非晶矽層,以提高波導的折射率對比,實現更緊湊的光學彎曲並優化晶片面積。
    此外,本研究亦成功製作聚合物微環共振器並整合金屬加熱器與氧化層絕緣結構,實現熱調變功能,當以 PECVD 所沉積之 SiO₂ 作為間隔層時,其靈敏度可達 2.27 pm/mW。並針對 TiO₂ 與 a-Si:H 等高折射率材料進行共振驗證,確認其具備製程穩定性與整合潛力。
    在架構設計上,提出具可調耦合強度之垂直耦合波導設計,結合下層氮化矽微環與上層 SU-8 波導,藉由控制中間氧化層厚度(0.5–2 μm)調整耦合效率,並形成 Drop-port 能量輸出結構。進一步擴展為多微環耦合陣列,展現應用於光子路由器與高密度訊號分配模組之潛力。
    綜上所述,本論文建立一套以玻璃基板為核心之低溫異質整合光子元件製程平台,涵蓋材料選擇、結構設計、製程整合與光學驗證,具備應用於光子積體電路(PICs)與共封裝光學(CPO)系統之技術潛力與擴展性。
    ;With the rapid advancement of digital technologies, the demand for high-bandwidth, low-latency, and high-performance data transmission continues to grow. Optical communication has emerged as a key solution to overcome the bandwidth limitations of electronic circuits and has been widely adopted in long-distance and high-speed data transmission systems. Silicon photonics, with its high integration density and compatibility with complementary metal-oxide-semiconductor (CMOS) processes, It enables low-cost, low-loss, and high-efficiency optical interconnects on a single chip. However, silicon photonics still faces challenges related to material and process limitations, particularly in heterogeneous integration and packaging flexibility.
    To address these challenges, this study adopts glass substrates as a heterogeneous integration platform. Glass offers several inherent advantages, including a low refractive index for optical isolation, high flatness, dimensional stability, and low dielectric loss, making it suitable for high-frequency signal transmission. Its compatibility with large-area manufacturing techniques, such as fan-out panel-level packaging (FOPLP), also reduces cost and enhances throughput. Furthermore, the mechanical robustness of glass substrates provides excellent resistance to warpage, making them ideal for emerging applications in virtual reality (VR), augmented reality (AR), and co-packaged optics (CPO).
    This work explores the potential of polymer materials in photonic integration, particularly in the fabrication of high-quality waveguides. Both single-layer SU-8 polymer waveguides and hybrid waveguide structures incorporating silicon nitride (Si₃N₄) or amorphous silicon (a-Si:H) were investigated. Using ultraviolet (UV) contact lithography, we successfully patterned waveguides directly on glass substrates without relying on advanced lithography equipment. By integrating smooth PECVD-deposited Si₃N₄ films (<2 nm surface roughness, 50–100 nm thickness) or 400 nm a-Si:H layers, the refractive index contrast was enhanced, enabling tighter waveguide bending and reduced chip footprint.
    High-quality polymer microring resonators were demonstrated, achieving an intrinsic quality factor Qi exceeding 1.2×105. In addition, metal heaters were integrated with SiO₂ insulation layers to realize thermo-optic tuning. The highest tuning sensitivity of 2.27 pm/mW was achieved using SiO₂ cladding. TiO₂ and a-Si:H ring resonators were also fabricated and tested, verifying their feasibility for integration and resonance performance.
    A vertically coupled waveguide structure was further developed, utilizing SU-8/Si₃N₄ stacked layers and PECVD SiO₂ as the tunable coupling gap. This structure enabled efficient Drop-port output and multi-ring coupling design. The platform combines low-temperature fabrication, structural flexibility, and multi-material integration capabilities. It offers promising potential for advanced photonic integrated circuits (PICs), high-density photonic routing, and co-packaged optical interconnects.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML23檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明