中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97671
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83696/83696 (100%)
造访人次 : 56346904      在线人数 : 1733
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97671


    题名: 透過Cu31S16及Cu2O的界面工程在雙電極系統中實現穩定的二氧化碳對甲酸鹽的轉化;Stable CO2-to-Formate Conversion in a Dual-Electrode System Enabled by Cu31S16-Cu2O Interface Engineering
    作者: 蔡烘瑋;Tsai, Hung-Wei
    贡献者: 材料科學與工程研究所
    关键词: 二氧化碳還原反應;Cu31S16;臨場X光吸收光譜;配對電解;CO2 reduction reaction;Cu31S16;In Situ X-ray absorption spectroscopy;Paired Electrolysis
    日期: 2025-06-25
    上传时间: 2025-10-17 11:45:54 (UTC+8)
    出版者: 國立中央大學
    摘要: 電化學二氧化碳還原反應(CO2RR)作為一項極具潛力的策略,能將CO2轉化為有價值的燃料與化學品,從而有效應對全球氣候變遷挑戰,並促進碳中和進程。本研究中,透過一種結合 Cu2O 與 Cu31S16的表面工程策略,成功提升了銅泡沫(Cu foam, CF)電極在 CO2還原生成甲酸(HCOOH)的轉化率與結構穩定性。此外,亦建構出一套高效電解系統,用以實現高附加值燃料的生產,推動 CO2的永續利用。
    本研究系統性探討了界面工程對CO2RR選擇性的影響。在 −0.8 V (vs. RHE)條件下,Cu2O 修飾後的 CF 電極其甲酸產率(FEHCOOH)相較於未修飾 CF 基材提高逾兩倍。進一步於 Cu2O 表面引入 Cu31S16,可進一步提升性能。最終獲得的 Cu31S16–Cu2O/CF 催化劑,不僅展現更高的 FEHCOOH,還具備卓越的操作穩定性,在−0.8 (V vs. RHE)條件下連續反應 20 小時後仍可維持 68% 的 FEHCOOH。
    為深入揭示其結構與活性間的關聯,本研究結合X光繞射(XRD)、X光吸收光譜(XAS)與循環伏安(CV)等多項材料與電化學表徵技術。臨場XAS與 CV結果顯示,Cu31S16在電化學條件下發生結構轉變,最終形成穩定的Cu2O表面,進一步提升其催化活性。
    此外,為提升整體能源效率,本研究以甲醇氧化反應(MOR)取代傳統的氧氣析出反應(OER)作為陽極反應,成功建構出一種配對電解系統。該整合式雙電極共電解裝置實現了高效率、高選擇性的甲酸產出,展現出其作為永續燃料合成與二氧化碳利用之實用且具潛力的技術方案。;The electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for addressing global climate challenges by converting CO2 into valuable fuels and chemicals, thereby contributing to carbon neutrality. In
    this study, a surface engineering strategy involving Cu2O and Cu31S16 was developed to enhance the CO2-to formate (HCOOH) conversion efficiency and structural stability on Cu foam (CF) electrode. Additionally, an efficient electrolysis system was constructed to enable the production of value-added fuels while promoting sustainable CO2 utilization. The effect of interface engineering on the selectivity of the CO2RR was systematically investigated. At –0.8 V (vs. RHE), the Faradaic efficiency for HCOOH (FEHCOOH) of the Cu2O modified CF more than doubled compared to the unmodified CF substrate. To further enhance performance, Cu31S16 was incorporated onto the Cu2O surface. The resulting Cu31S16–Cu2O/CF catalyst not only delivered higher FEHCOOH but also exhibited excellent operational stability, maintaining a FEHCOOH of 68% after 20 hours at –0.8 V (vs. RHE).
    Comprehensive materials and electrochemical characterizations, including X-ray Diffraction (XRD), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV),
    were conducted to elucidate the underlying structure activity relationships. In situ XAS and CV measurements indicated that Cu31S16 underwent structural transformation under electrochemical conditions, ultimately forming a stable Cu2O surface that enhances its catalytic activity.
    Moreover, to improve overall energy efficiency, the conventional oxygen evolution reaction (OER) was replaced with an anodic methanol oxidation reaction (MOR), enabling the development of a paired electrolysis configuration. This integrated two-electrode co-electrolysis system achieved efficient, highly selective HCOOH production, offering a practical and sustainable approach for carbon-neutral fuel synthesis and CO2 utilization.
    显示于类别:[材料科學與工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML3检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明