中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97678
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83696/83696 (100%)
造访人次 : 56349510      在线人数 : 675
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97678


    题名: 以微陽極導引電鍍法製備鎳-鉬-鈷、1-T相二硫化鉬/鎳-鉬-鈷複合電極並探討其在1.0 KOH中電解產氫之陰極效能;Fabrication of Ni-Mo-Co and 1T-MoS2/Ni-Mo-Co composite electrodes by MAGE, and their cathodic efficiency of hydrogen production in 1.0 M KOH
    作者: 許家瑄;Xu, Jia-Xuan
    贡献者: 材料科學與工程研究所
    关键词: 鎳鉬鈷合金;二硫化鉬;複合電鍍;微陽極導引電鍍法;HER析氫效能;Ni-Mo-Co alloy;MoS2;composite electroplating;micro-anode guided electroplating method;HER hydrogen evolution efficiency
    日期: 2025-07-17
    上传时间: 2025-10-17 11:46:36 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文首先以本實驗室研發之微陽極導引電鍍法(Micro-anode guided electroplating, MAGE)製備鎳-鉬-鈷三元合金微柱,以探討其做為鹼性水電解產氫陰極之可行性。鎳-鉬-鈷三元合金之研究動機,在於鉬可降低鎳之產氫過電位;鈷能使陰極穩定化。隨後,以水熱法合成1-T相二硫化鉬粉末,再以MAGE製程,將1-T相二硫化鉬粉末加入電鍍浴中,製備1-T相二硫化鉬/鎳-鉬-鈷複合微電極,進而比較鎳-鉬-鈷三元合金與1-T相二硫化鉬/鎳-鉬-鈷複合微電極在鹼性 (1.0 M KOH中) 水電解產氫之陰極產氫之效能之優劣。
    MAGE製程中,採用直徑250 μm白金絲製作微陽極,直徑500 μm銅線製作陰極。 陰、陽兩極放入不含(或含)二硫化鉬粉末之鎳-鉬-鈷三元合金鍍浴,兩者間維持90 μm之間距,在製備鎳-鉬-鈷合金微柱時,控制電壓在4.5 V下進行電鍍。改變鍍浴中硫酸鈷之濃度在0.00、0.05、0.10 及0.15 M下來探討鍍浴中[Co2+]對合金微柱組成、結構與性質之影響,進而探討不同組成合金微柱之產氫效能差異。微柱之材料特性等分析,例如:表面形貌以SEM觀察進行,化學組成以EDS分析,晶體結構以XRD解析。至於電極鹼性水電解產氫之陰極效能,則以標準三極式電化學裝置,在1.0 M KOH中進行線性掃描伏安法(LSV)、計時電位法(CP)、循環伏安法(CV)、交流阻抗頻譜(EIS)等電化學測試來進行評估。結果顯示:鍍浴中[Co2+]在0.10 M所製備之Ni40Mo36Co24合金微柱,具有最佳之產氫效能。
    另外,在含0.10 M [Co2+] 之合金鍍浴中,添加由水熱法製備之1-T相二硫化鉬粉末,濃度分別為: 0.16、0.32、0.48、0.64 g/L。設定微陽極與銅陰極間距在90 μm,電壓在4.2 V,下進行MAGE製程,製備1-T相二硫化鉬/鎳-鉬-鈷複合微電極。實驗所得之鎳-鉬-鈷/二硫化鉬複合微柱同樣經上述組成、結構與性質分析,進而在1.0 M KOH中探討比較不同合金微柱之產氫效能差異。
    複合微柱之結果顯示:鍍浴中添加0.64 g/L濃度之二硫化鉬時,所得之複合微柱具有最低的起始電位(Eonset = -25 mV)、最低的過電位(η_10= -41 mV、η_100= -136 mV)、最低的Tafel斜率(Tafel slope = 52 mV/dec)、最大的交換電流密度(1.32 mA/cm2)、最大的陰極峰值電流密度(-1328 mA/cm2)、最大的電雙層電容值以及電化學活性表面積(Cdl = 44.5 mF/cm2、ECSA=1112 cm2)、最低的電荷轉移電阻(3.17 Ω·cm2)、最低的平均電位(0.117 V v.s RHE),顯示其具有最優的產氫效能。歸因於1-T相二硫化鉬具有高電子導電性,且具結構具有較多邊緣活性位點的優勢,因而能提升其產氫效能。此種1-T相二硫化鉬/鎳-鉬-鈷複合微電極比單純的鎳-鉬-鈷合金微柱,不僅以較低能耗實現高效的氫氣產生,還在固定時間內保持良好穩定性。
    ;In this study, the micro-anode guided electroplating (MAGE) method previously developed in our laboratory was used to prepare Ni-Mo-Co pure alloy microcolumns and 1T phase MoS2/Ni-Mo-Co composite microcolumns. The two types of microcolumns were placed in 1.0 M KOH as cathodes for alkaline water electrolysis. The purpose of the study was to explore and compare the differences in their catalytic activities for hydrogen production. Research topics include (1)The concentration effect of [Co2+] in plating bath on the composition, structure and properties of the Ni-Mo-Co pure alloy microcolumns obtained by electroplating, and the difference in their cathode efficiency for hydrogen production in alkaline water electrolysis. (2)A hydrothermal process was conducted to synthesize 1T-MoS2 powder that was then added to the plating bath in different amounts to prepare the 1T-MoS2/Ni-Mo-Co composite microcolumns by MAGE. Then, the effect of the amount of MoS2 added on the composition, structure and properties of the composite microcolumns, as well as the differences in the cathode efficiency of hydrogen production in alkaline water electrolysis, are discussed. (3) Both pure nickel-molybdenum-cobalt alloy micropillars and 1T-MoS2/Ni-Mo-Co composite microcolumns were placed in 1.0 KOH to perform the alkaline water electrolysis for estimating and comparing their cathode catalytic activity in the production of hydrogen.
    In the MAGE process, the micro-anode is made of platinum wire with a diameter of 250 μm, and the cathode is made of copper wire with a diameter of 500 μm. The distance between the two electrodes was always maintained at 90 μm in the 18 ℃ plating bath. When preparing Ni-Mo-Co pure alloy microcolumns, a voltage of 4.5 V was applied to a bath containing of 0.30 M [Ni2+], 0.15 M [MoO42-], 0.30 M sodium citrate, 0.40 M ammonium chloride, and [Co2+] varying at 0.00, 0.05, 0.10 and 0.15 M. The electroplating was terminated for the microcolumns grown at a height of 90 μm in about 1 hours. The inter-electrode distance remains unchanged for the preparation of composite microcolumns but the voltage of MAGE is changed to 4.2 V. In the bath, the [Co2+] was fixed at 0.10 M, and the other components remained unchanged. However, 1T-MoS2 powder prepared by hydrothermal method was added in various amounts: 0.16, 0.32, 0.48, and 0.64 g/L. 0.20 mM sodium lauryl sulfate was added to promote homogeneous dispersion of the powder. The electroplating was terminated for the microcolumns grown at a height of 90 μm in about 2 hours. The material properties of the pure alloy microcolumns and composite microcolumns were examined (i.e., surface morphology observation by SEM, chemical composition analysis by EDS, and crystal structure analysis by XRD.) The performance of the microcolumns applied for hydrogen production in alkaline water electrolysis was evaluated in a standard three-electrode electrochemical cell in 1.0 M KOH by electrochemical tests such as linear sweep voltammetry (LSV), chronopotentiometry (CP), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results demonstrated that the Ni40Mo36Co24 microcolumn, prepared from the bath containing 0.10 M [Co2+], among all pure alloy microcolumns reveals the best cathodic efficiency. Among all the composite microcolumns, the composite microcolumn resulted from the bath added with 0.64 g/L MoS2 displays the lowest onset potential (Eonset = -25 mV), the lowest overpotential (η_10 = -41 mV, η_100 = -136 mV), the lowest Tafel slope (Tafel slope = 52 mV/dec), the highest exchange current density (1.32 mA/cm2), the highest cathode current density (-1328 mA/cm2),the maximum double layer capacitance and the electrochemically active surface area (C_dl= 44.5 mF/cm2,ECSA=1112 cm2), the lowest charge transfer resistance (3.17 Ω∙ cm2), the lowest average potential (0.117 Vs RHE), indicating that it has the best hydrogen production efficiency. The excellent property of this composite microcolumn is attributed to the outstanding contribution of 1T-MoS2 having electronic conductivity, as well as the advantage with many active sites on the structural edges, which improve catalytic activity. Thus, the 1T-MoS2/Ni-Mo-Co composite microelectrodes are superior to pure Ni-Mo-Co alloy microelectrodes due to not only highly catalytic reactivity in lower energy consumption, but also excellent stability on performance.
    显示于类别:[材料科學與工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML8检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明