中大學術數位典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97682
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83956/83956 (100%)
Visitors : 62589539      Online Users : 491
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97682


    Title: 用於量子矽光元件應用之氮化矽環形諧振器結構優化;Optimization of Waveguide Resonators for Quantum Photonic Applications
    Authors: 陳浩中;Chen, Hao-Zhong
    Contributors: 光電科學與工程學系
    Keywords: 矽光子;氮化矽;微環形諧振器;非線性光學;消光比濾波器;光纖耦合;Silicon Photonics;Silicon Nitride;Micro-ring Resonator;Nonlinear Optics;Extinction Ratio Filter;Fiber Coupling
    Date: 2025-07-25
    Issue Date: 2025-10-17 11:46:55 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著光通訊與量子光學技術的快速發展,矽光子平台因其高度整合性與製程相容性,成為未來光電元件設計的重要趨勢。本研究以氮化矽微環形諧振器為核心,針對非線性系統應用進行結構設計優化,並結合製程開發與實驗驗證,探討高效能矽光子元件之可行性。
    為了增強環形諧振器的性能,在高限制波導透過滑輪耦合角度設計,於10度角達到最佳耦合成果,實現本質品質因子達9.99×104,並以螺旋結構量測不同長度確立傳輸損耗約為3.88 dB/cm。於低限制波導設計中利用4 µm氧化矽絕緣層,成功實現品質因子高達5.55×105與傳輸損耗僅2.18 dB/cm,展現了其於高能量非線性應用中的潛力。
    進一步整合串聯馬赫-曾德干涉器與環形諧振器之複合式結構,成功實現高消光比濾波器(>35 dB)於無需外部調變情況下穩定運作。此外展現多波長選擇與頻率抑制能力,具備應用於量子計算與光子神經網路平台之應用。此外提出光纖埋入式凹槽設計,改善邊緣耦合穩定性,並達到光纖單邊耦合損耗為5.16 dB,降低背景雜訊干擾並提升封裝整合性,證實其系統穩定性與實用化價值。
    本研究已成功建立氮化矽微環形諧振器設計、製程與封裝整合之完整開發流程,對於未來非線性光子學與量子光電應用之發展具備重要參考價值。
    ;With the rapid development of optical communication and quantum photonics, silicon photonic platforms have become a major trend in optoelectronic device design due to their high integration density and CMOS-compatible fabrication. This research centers on silicon nitride (Si₃N₄) micro-ring resonators, with structural optimizations targeting nonlinear applications. The feasibility of high-performance silicon photonic devices is investigated through integrated design, fabrication processes, and experimental validation.
    To enhance resonator performance, pulley coupling was employed in high-confinement waveguides, achieving optimal coupling at a 10-degree angle and an intrinsic quality factor of 9.99 × 10⁴. A spiral structure was used to characterize propagation loss across different lengths, resulting in a measured loss of approximately 3.88 dB/cm. In the low-confinement configuration, a 4 µm SiO₂ insulation layer enabled a high quality factor of 5.55 × 10⁵ with a low transmission loss of 2.18 dB/cm, showing strong potential for high-energy nonlinear applications.
    A composite structure integrating a Mach–Zehnder interferometer (MZI) with a micro-ring resonator was demonstrated, achieving a high extinction ratio filter (>35 dB) that operates stably without external modulation. Multi-wavelength selection and frequency suppression were also realized, indicating suitability for quantum computing and photonic neural network systems. Furthermore, a recessed embedded-fiber groove structure was introduced to improve edge coupling stability, achieving a single-sided coupling loss of 5.16 dB. This design also reduced background noise and enhanced packaging integration, validating its system stability and practical applicability.
    Overall, a complete development process for Si₃N₄ micro-ring resonator design, fabrication, and packaging has been established, offering valuable insights for future advancements in nonlinear photonics and quantum optoelectronic applications.
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML38View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明