English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56299881      線上人數 : 1270
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97691


    題名: 利用核殼結構降低鉑金屬使用之析氫催化劑於PEM水電解之應用;Application of Core–Shell Structured Hydrogen Evolution Catalysts with Reduced Usage in PEM Water Electrolysis
    作者: 許紫如;Hsu, Zih-Ru
    貢獻者: 材料科學與工程研究所
    關鍵詞: 析氫反應;Turkevich 法;核殼結構;碳載體;質子交換膜水電解器;hydrogen evolution reaction;Turkevich method;core-shell structure;carbon supports;proton exchange membrane water electrolyzer
    日期: 2025-07-22
    上傳時間: 2025-10-17 11:47:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 在全球追求能源轉型及碳中和的趨勢下,氫能可作為淨零碳排的重要潔淨能源之一。其中,透過質子交換膜水電解器 (Proton Exchange Membrane Water Electrolyzer, PEMWE) 進行電解水分解反應,可製備高純度氫氣,被視為實現氫經濟的重要技術並且也已相當成熟。 PEMWE 系統反應速度快、能耗低、氫氣純度高,但其所使用在析氫反應 (Hydrogen Evolution Reaction, HER) 之催化劑多仰賴高成本的貴金屬鉑 ( Pt ),整體系統成本高昂,同時也不利於大規模應用與永續發展。
    為了解決上述問題,本研究提出一種基於金鉑核殼結構之高效析氫催化劑 (Au@Pt),旨在於降低Pt用量的同時,可維持或甚至提升其電催化性能。實驗中首先利用 Turkevich 法合成粒徑可控之金奈米粒子 (Au NPs) 作為核心,並透過濕化學還原法將 Pt 均勻沉積於其表面,形成具備均勻殼層的 Au@Pt 奈米結構。進一步將其以不同比例負載於導電性良好的 Vulcan XC-72R 碳載體上,製備出不同貴金屬濃度的 Au@Pt/C 奈米催化劑材料。在實際應用中,20 wt% Au@Pt/C 催化劑於 PEMWE 系統中常溫操作下展現出優異的性能,於電流密度 1 A/cm2時僅需 2.59 V 的低反應電位。其長時間穩定性亦表現出色,在相同電流條件下持續運行 100 小時後,反應電位幾乎穩定維持於 2.6 V,衰退率僅 4.29 %,顯示出極高的操作耐久性與催化層結構穩定性。綜合以上結果證實,透過核殼結構設計與碳載體優化配置,不僅可有效降低Pt含量,亦可提升催化效能與穩定性,展現出本研究材料於 PEMWE 系統中作為高效 HER 電極材料的潛力。除此之外,此材料之金原料是回收廢棄電路板上的貴金屬而來,因此也達到降低成本及資源永續利用的精神。
    ;In response to the global push for energy transition and carbon neutrality, hydrogen energy has emerged as a promising clean energy carrier to achieve net-zero emissions. Among various hydrogen production technologies, proton exchange membrane water electrolyzer (PEMWE) stands out as a mature and efficient method for generating high-purity hydrogen through electrochemical water splitting. PEMWE systems offer rapid response, low energy consumption, and high hydrogen purity. However, the hydrogen evolution reaction (HER) at the cathode typically relies on the use of platinum (Pt)-based catalysts, which are costly and hinder large-scale deployment and long-term sustainability.
    To address this issue, this study proposes a high-efficiency HER electrocatalyst based on a gold-core platinum-shell (Au@Pt) core–shell nanostructure, aiming to significantly reduce Pt usage while maintaining or even enhancing electrocatalytic performance. Au nanoparticles with controllable size were first synthesized via the Turkevich method and subsequently coated with a uniform Pt shell using a wet-chemical reduction process to form Au@Pt core–shell structures. These were then loaded in various proportions onto Vulcan XC-72R conductive carbon supports to prepare the different Au@Pt/C nanocatalysts with different precious metal concentrations.
    Under practical PEMWE operating conditions at room temperature, the 20 wt% Au@Pt/C catalyst exhibited excellent performance, requiring only 2.59 V to reach a current density of 1 A/cm2. Moreover, the catalyst maintained remarkable stability over 100 hours of continuous operation at the same current density, with the reaction voltage remaining nearly constant around 2.6 V, and the degradation rate was only 4.29%.
    These findings confirm that rational design of core–shell structures combined with optimized carbon support integration not only reduces the demand for platinum but also enhances catalytic activity and operational stability, demonstrating the strong potential of the developed material as an efficient HER electrode for PEMWE systems. Additionally, the gold precursor used in this material was recovered from waste printed circuit boards, thereby reducing material costs and promoting resource sustainability.
    顯示於類別:[材料科學與工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明