中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/97694
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56349510      Online Users : 674
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/97694


    Title: 高熵催化劑與流道設計對陰離子交換膜水電解系統電化學效率之影響;Effects of High-Entropy Catalysts and Flow Field Design on the Electrochemical Efficiency of AEMWE Systems
    Authors: 洪瑋;Hong, Wei
    Contributors: 材料科學與工程研究所
    Keywords: 模擬;流道;COMSOL;陰離子交換膜水電解器;高熵陽極;Simulation;flow channel;COMSOL;anion exchange membrane water electrolyzer;high-entropy anode
    Date: 2025-07-22
    Issue Date: 2025-10-17 11:47:30 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究目的是使用comsol平台,耦合電場、濃度場、流場及熱場的AEMWE水電解槽模型。該模型可同時分析此四種物理量的耦合關係,並分析不同觸媒、溫度、及流場結構等運行參數,對整個系統所造成的影響。
    因此我們首先基於真實幾何結構進行蛇道系統的幾何建模,選擇物理場模型後進行實驗及模型的擬合,之後進行不同物理、化學參數及流場結構對整體的影響,並且分析本實驗室三種不同觸媒材料之性能比較,分別是五元高熵、四元中熵及三元中熵觸媒。結果表明,在相同流道設計下,五元高熵觸媒顯示出最好的電化學性能表現,且。此外,於80°C下,以五元高熵電極製成之水電解器,在同樣為1.613V的電壓下,蛇道型水電解器之電流密度為219.32 mA/cm2,在鎳網流道模型則為267.32 mA/cm2,約提升了21.8%左右,顯示本實驗室設計之新式鎳網流場結構可以顯著提高反應效能。其原因在於新式的鎳網流道模型可以顯著提升生成物移除速率及減少濃度累積狀況。鎳網流道模型在膜/電極介面以及電極/流道介面之氣體濃度皆低於同介面上蛇道模型的氣體濃度,證實了新型流道系統對氣體分布均勻性的提升。此外,為了分析熱場對效能的影響,我們進一步在80°C、60°C以及40°C的均勻熱場下,分析水電解器極化曲線及各介面上氣體濃度分布狀況,在1.613V之外加電壓下,電流密度分別為267.33 mA/cm²、238.50 mA/cm²及202.24 mA/cm²顯示溫度越高對整體的性能提升的結果,並以不同介面上之濃度分布圖揭示了溫度對生成物移除的影響。此模擬結果讓我們可以更了解水電解槽的運行原理,並進一步為未來運行及改良提供基礎及預測。
    ;The objective of this study is to use the COMSOL platform to model an AEMWE (Anion Exchange Membrane Water Electrolyzer) with coupled electric field, concentration field, flow field, and thermal field. This model can simultaneously analyze the coupling relationships of these four physical quantities and examine the effects of operating parameters, such as different catalysts, temperature, and flow field structures, on the overall system.
    Therefore, we first performed geometric modeling of the serpentine flow channel system based on the real geometry. After selecting the physical field model, experimental data and the model were fitted. We then investigated the effects of different physical, chemical parameters, and flow field structures on the system, and compared the performance of three different catalyst materials used in our laboratory: five-component high-entropy, four-component medium-entropy, and three-component medium-entropy catalysts. The results showed that under the same flow channel design, the five-component high-entropy catalyst demonstrated the best electrochemical performance. Furthermore, at 80°C, the water electrolyzer with a five-component high-entropy electrode, operating at a voltage of 1.613V, achieved a current density of 219.32 mA/cm² in the serpentine flow channel model, while the nickel mesh flow channel model achieved 267.32 mA/cm², representing an improvement of approximately 21.8%. This demonstrates that the newly designed nickel mesh flow field structure in our laboratory can significantly enhance reaction performance. The reason for this is that the new nickel mesh flow channel model can substantially improve the removal rate of the products and reduce concentration accumulation. The gas concentration at the membrane/electrode interface and electrode/flow channel interface in the nickel mesh flow channel model is lower than that in the serpentine channel model at the same interface, confirming that the new flow channel system enhances gas distribution uniformity.
    In addition, to analyze the impact of the thermal field on performance, we further examined the polarization curves of the water electrolyzer and the gas concentration distribution at each interface under uniform thermal fields at 80°C, 60°C, and 40°C. At a voltage of 1.613V, the current densities were 267.33 mA/cm², 238.50 mA/cm², and 202.24 mA/cm², respectively, indicating that higher temperatures improve overall performance. The concentration distribution maps at different interfaces revealed the influence of temperature on product removal. These simulation results help us better understand the operating principles of the water electrolyzer and provide a foundation and prediction for future operation and improvement.
    Appears in Collections:[Institute of Materials Science and Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明