English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83956/83956 (100%)
造訪人次 : 62586285      線上人數 : 413
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97711


    題名: 基於振動訊號分析於機台變異性對鑽孔品質影響之評估;A Vibration-Based Evaluation of the Impact of Machine Tool Variability on Drilling Quality
    作者: 李思慧;LI, SSU-HUI
    貢獻者: 光電科學與工程學系
    關鍵詞: 振動訊號分析;鑽孔品質;振動衰減係數;SHAP 解釋法;Vibration Signal Analysis;Drilling Quality;Decay Coefficient;SHAP Interpretation
    日期: 2025-07-28
    上傳時間: 2025-10-17 11:49:11 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究聚焦於高密度電子製程中的機台差異對鑽孔品質潛在影響,並提出一套基於振動訊號分析的監測方法,作為健康狀態判斷依據。考量目前多數產線仍依賴人工巡檢與固定保養週期,對連續高速加工中早期異常的掌握有限,本論文以實際部署的傳統鑽孔機與雷射鑽孔機為實驗對象。方法上,特別以振動衰減係數(Decay Coefficient)作為描述系統能量耗散與動態穩定性指標,搭配線性回歸與隨機森林回歸模型進行品質預測與特徵排序,並結合 SHAP 解釋法(SHapley Additive exPlanations)提升模型可解釋性。
    結果顯示,線性回歸模型對製程能力指標 CPK 具高度預測力:傳統鑽孔機在空轉與加工階段的振動變異與 CPK 呈顯著線性關聯,振動變異對 CPK 的解釋力達 97.26 %。雷射鑽孔機則經 SHAP 分析辨識出多組具顯著交互效應的參數組合,驗證特徵排序機制有效性。與僅以 OA 值設定閾值的傳統方法相比,所提架構能更精細掌握機台狀態,並具部署彈性。當異常樣本有限時,此方法仍能即時提供可解釋的健康監測與品質預測,具備高變動製程中的穩定性與預測維護價值。;This thesis explores how machine variability affects drilling quality in high-density electronic manufacturing processes and presents a vibration-based monitoring approach to assess machine health. In modern industrial settings, production lines typically depend on manual inspections and fixed maintenance schedules, which offer limited responsiveness to early-stage anomalies during continuous, high-speed operations. To overcome this limitation, the study introduces a cross-machine vibration monitoring framework that incorporates both conventional mechanical drilling machines and laser drilling machines operating in real production environments. The methodology centers on the use of the vibration decay coefficient as an indicator of energy dissipation and dynamic stability within the system. Quality prediction and feature ranking are performed using linear regression and random forest regression models, while the SHAP (SHapley Additive exPlanations) framework is incorporated to enhance model interpretability.
    The results demonstrate that the linear regression model exhibits strong predictive capability for the process capability index (CPK). In conventional drilling machines, a significant linear relationship was observed between vibration variability during both idle and machining stages and the CPK, with vibration variability explaining up to 97.26% of its variation. For laser drilling machines, SHAP analysis identified multiple parameter combinations with notable interaction effects, confirming the effectiveness of the proposed feature-ranking mechanism. Compared to traditional threshold-based approaches that rely solely on OA values, the proposed framework offers more precise detection of machine condition changes and greater flexibility for deployment. Even under conditions with limited abnormal samples, the method is capable of providing real-time, interpretable health monitoring and quality prediction, demonstrating both stability and practical value for predictive maintenance in high-variability manufacturing environments.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML37檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明