English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 62103389      線上人數 : 887
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/97719


    題名: 雷射微加工之位置精度與振動的關聯性研究;The correlation between position accuracy and vibration in laser micromachining
    作者: 林家維;Lin, Chia-Wei
    貢獻者: 光電科學與工程學系
    關鍵詞: 雷射微加工;飛秒雷射;振動加速度;探針卡;精準製造;Laser micromachining;femtosecond laser;vibrational acceleration;probe card;precision manufacturing
    日期: 2025-07-28
    上傳時間: 2025-10-17 11:50:06 (UTC+8)
    出版者: 國立中央大學
    摘要: 探針卡(Probe card)的微孔位置精確度一直以來都是製造上的一大難題。有好的位置精確度,才能提升探針可容許的外型公差,降低植針時的拋針率,同時也能使植針更順利,降低植針過程的時間成本。實務上能夠容許的微孔位置偏移量約為0.002 mm,在植針時若位置偏移量超過0.002mm,則需要人工使用抗靜電鑷子去手動調整植針位置,但此調整方式非常需要經驗的累計且非常耗費時間成本。
    本研究針對探針卡導板微孔雷射加工過程中之移動平台的振動加速度進行量化分析,旨在探討移動平台的振動加速度對微孔位置精度之潛在關係,使用飛秒雷射鑽孔設備進行實驗,考慮移動平台之速度與振鏡掃描頻率,搭配Smart Tag振動加速度感測器,以每0.5秒一次的頻率紀錄振動加速度,並使用高解析自動光學量測儀進行微孔位置量測。
    本研究設計5種移動平台速度(5 mm/s、20 mm/s、35 mm/s、50 mm/s、100 mm/s)與5種振鏡掃描頻率(65 Hz、130 Hz、260 Hz、390 Hz、500 Hz)作為實驗變數,共25組實驗組且每組實驗執行兩次,並記錄雷射鑽孔時的振動加速度。完成鑽孔後使用高精度自動光學量測系統做微孔位置偏移量的量測。將振動加速度及微孔位置偏移量進行皮爾森積差相關係數分析後,結果顯示振動加速度與微孔位置偏移量的相關係數在-0.171 ~ 0.114之間,相關性介於弱相關與無相關。
    在平台移動速度為100 mm/s時,相較其他平台移動速度,微孔位置偏移量降低至0.000689 mm(約下降54.77%),良率增加至100%,但振動加速度並沒有明顯增加,因此也表明移動平台的振動與微孔位置偏移量並無明顯相關性。雖然實驗結果證明雷射微加工之微孔位置精度與移動平台之振動無明顯關係,但仍然有找到特定的參數,使加工良率上升至100%,且本研究成功建立一套量測與分析流程,藉由Smart Tag實現振動資訊的即時取得與量化,為探針卡製程導入精準製造概念,並提供具體實踐依據。
    ;The positional accuracy of micro-holes in probe cards has long been a critical challenge in manufacturing. High positional precision enables greater tolerance for probe geometry, reduces the pin rejection rate during pin assembly, and facilitates a smoother pinning process, thereby minimizing time costs.
    In practice, the allowable deviation of micro-hole position is approximately 0.002 mm. If the deviation exceeds this value, manual adjustment using anti-static tweezers is required during pin assembly. However, this process is highly dependent on experience and is extremely time-consuming.
    This study conducts a quantitative analysis of the vibrational acceleration of the motion stage during femtosecond laser drilling of micro-holes in probe card guide plates. The goal is to investigate the potential relationship between vibrational acceleration and micro-hole positional accuracy. Experiments were conducted using a femtosecond laser drilling system, with variations in stage velocity and galvanometer scanning frequency. A Smart Tag vibration sensor was used to record three-axis vibrational acceleration data every 0.5 seconds, and a high-resolution automatic optical measurement system was employed for micro-hole position measurements.
    Five different stage velocities (5 mm/s, 20 mm/s, 35 mm/s, 50 mm/s, and 100 mm/s) and five galvanometer scanning frequencies (65 Hz, 130 Hz, 260 Hz, 390 Hz, and 500 Hz) were selected as experimental parameters, resulting in 25 experimental conditions. Each condition was repeated twice, and vibrational acceleration during laser drilling was recorded. After drilling, a high-precision automatic optical measurement system was used to measure the positional deviation of the micro-holes.
    Pearson correlation analysis was performed between vibrational acceleration and micro-hole position deviation. The results showed that the correlation coefficients ranged from -0.171 to 0.114, indicating a weak or negligible correlation.
    When the stage velocity was set to 100 mm/s, the average positional deviation of micro-holes decreased to 0.000689 mm (a reduction of approximately 54.77%) and the yield increased to 100%, while no significant increase in vibrational acceleration was observed. This suggests that the motion stage vibration has no significant correlation with micro-hole positional deviation.
    Although the experimental results demonstrate no significant relationship between stage vibration and micro-hole positional accuracy in laser micromachining, specific parameters were identified that enabled the yield to reach 100%. Furthermore, this study successfully established a measurement and analysis framework that enables real-time acquisition and quantification of vibration data through the Smart Tag system, contributing to the implementation of precision manufacturing in probe card production and providing a practical reference for industrial applications.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML24檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明