摘要: | 本研究旨在探討利用電漿誘導氣相沉積技術,將(3-氨基丙基)三乙氧基矽烷(3-APTES)修飾於聚甲基丙烯酸甲酯(PMMA)表面,以提升後續光學鍍膜之界面附著性。實驗中,首先以氧電漿進行前處理,成功活化PMMA表面使其表現出超親水特性(水接觸角最低達4.59º),提供穩定的羥基接枝平台。隨後於不同直流電漿功率條件下沉積3-APTES,並透過水接觸角量測、光放射光譜儀(OES)、傅立葉轉換紅外光譜(FTIR)、X光光電子能譜(XPS)、原子力顯微鏡(AFM)與光學穿透光譜等分析手法,評估改質層之化學、形貌與光學性質。 結果顯示,氧電漿可顯著提升PMMA表面極性,水接觸角最低可達4.59º,且不影響粗糙度,有助於提供穩定的羥基接枝平台。當矽烷化電漿功率設為80 W時,3-APTES能以均勻且緻密的薄層沉積於基材表面,並有效保留自由胺基(-NH2)官能基團,其膜層表面粗糙度(Rq)為3.71 nm。OES分析指出該功率條件下能提供足夠能量以促進前驅物解離與鍵結,同時避免官能基過度破壞。FTIR與XPS分析也確認了矽氧鍵結(Si–O–Si)的有效形成,並證實了自由胺基團的高度保留。後續於此條件下進行SiO2鍍膜時,其附著性達ASTM D3359標準中最高等級5B,並且保持平均93.5%之可見光穿透率,顯示改質層具備優異的穩定性與鍵結效果,同時保持原有光學特性。 本研究建立了氣相矽烷化參數與PMMA表面化學改質及附著性提升之關聯性,提出最適化功率條件,可兼顧官能團保留、形貌控制與光學鍍膜接合效能,為未來高分子材料用於光學元件中的表面改質製程提供具體且可靠的設計依據。 ;This study investigates the use of plasma-induced chemical vapor deposition (PICVD) to modify the surface of poly(methyl methacrylate) (PMMA) with (3-aminopropyl)triethoxysilane (3-APTES), aiming to enhance the interfacial adhesion of subsequent optical coatings. The PMMA substrate was first pretreated using oxygen plasma, which successfully activated the surface and rendered it superhydrophilic, achieving a minimum water contact angle of 4.59°, thereby providing a stable hydroxyl-rich platform for silane grafting. Subsequently, 3-APTES was deposited under various direct current plasma power conditions. The chemical, morphological, and optical properties of the modified layers were characterized using water contact angle measurements, optical emission spectroscopy (OES), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and UV-visible transmittance spectroscopy. The results show that oxygen plasma pretreatment significantly increased the surface polarity of PMMA without affecting its roughness, facilitating stable hydroxyl group formation. When the plasma power for silanization was set to 80 W, 3-APTES formed a uniform and compact thin film on the substrate while effectively retaining free amine (-NH2) functional groups. The resulting film exhibited a surface roughness (Rq) of 3.71 nm. OES analysis indicated that this condition provided sufficient energy to dissociate the precursor and promote bonding while avoiding excessive degradation of functional groups. FTIR and XPS confirmed the formation of siloxane (Si–O–Si) bonds and the high retention of amine functionalities. Under these optimized conditions, subsequent deposition of a SiO2 layer demonstrated excellent adhesion performance, achieving the highest 5B rating according to the ASTM D3359 standard, while maintaining an average visible transmittance of 93.5%. These results indicate that the modified layer offers excellent interfacial bonding stability without compromising optical transparency. This study establishes a correlation between gas-phase silanization parameters and the enhancement of surface chemistry and adhesion on PMMA substrates. It proposes an optimized plasma power condition that balances functional group retention, morphological control, and bonding performance, providing a practical and reliable process guideline for surface modification of polymeric materials in optical applications. |