本研究旨在利用固態反應合成法,將鐵(Fe)摻雜至 BaCe0.7Zr0.1Y0.1Yb0.1O3-δ 中,以優化質子導電型固態氧化物電池(Proton-conducting solid oxide cell, P-SOC)空氣電極功能層的電化學性能。鐵摻雜作為一種受體型摻雜機制,透過低價態 Fe³⁺ 部分取代高價態 Ce⁴⁺,不僅促進氧空位的生成,亦藉由電荷補償效應引入電子電洞(h⁺),從而進一步提升材料的電子導電性與催化活性,形成穩定的混合離子電子導體結構。基於此機制,預期經摻雜改質後的 BaCe0.7-xZr0.1FexY0.1Yb0.1 空氣電極功能層,能顯著增強固態氧化物電池的電化學表現。 實驗結果顯示,未經改質的空氣電極功能層在 650 °C 操作溫度下,其燃料電池峰值功率密度達 1064 mW cm⁻²;在相同溫度下進行電解模式測試時,於 1.6 V 下的電解電流密度可達 2364 mA cm⁻²,展現出優異的能量轉換效率與電流輸出能力。經鐵摻雜改質後,空氣電極功能層在 650 °C 下的燃料電池峰值功率密度提升至 1345 mW cm⁻²;於相同條件下的電解模式測試中,在 1.6 V 下的電解電流密度進一步提高至 4732 mA cm⁻²,證實摻雜改質顯著促進了電池性能。 ;This study aims to enhance the electrochemical performance of the air electrode functional layer in a proton-conducting solid oxide cell (P-SOC) by incorporating iron (Fe) into BaCe0.7Zr0.1Y0.1Yb0.1O3-δ via a solid-state reaction method. Fe acts as an acceptor dopant by partially substituting low-valence Fe3+ for high-valence Ce4+, which not only promotes the formation of oxygen vacancies but also introduces electronic holes (h+) through a charge compensation mechanism. These effects collectively improve the electronic conductivity and catalytic activity of the material, forming a stable mixed ionic-electronic conducting structure. Based on this mechanism, the Fe-doped BaCe0.7-xZr0.1FexY0.1Yb0.1 air electrode functional layer is expected to significantly improve the electrochemical performance of the solid oxide cell. Experimental results show that the undoped air electrode functional layer achieved a peak power density of 1064 mW cm-2 at an operating temperature of 650 °C in fuel cell mode, and an electrolysis current density of 2364 mA cm-2 at 1.6 V under the same temperature in electrolysis mode, demonstrating excellent energy conversion efficiency and current output. After Fe doping, the peak power density at 650 °C increased to 1345 mW cm-2, while the electrolysis current density at 1.6 V further increased to 4732 mA cm-2 under identical conditions, confirming that Fe doping significantly enhances the overall performance of the cell.